
UIL Computer Science, Page 1 of 8

Texas University Interscholastic League

Contest Event: Computer Science
The contest challenges high school students to gain an understanding of the significance of computation as well as
the details of Java programming, to be alert to new technology and information, to gain an understanding of the
basic principles of computer science, and to give students a start in one of the most important fields of the
Information Age.

The Texas Essential Knowledge and Skills (TEKS) are categorized by course area and grade level. The following
are course area abbreviations used for the TEKS in Computer Science:

Computer Science 1 = CS1;
Computer Science 2 = CS2.

Each TEKS begins with the outline number for the appropriate course area.

Texas Essential Knowledge and Skills Contest Knowledge and Skills

Basic Programming and PC Skills:

1A. Demonstrate knowledge and appropriate use
of operating systems, software applications, and
communication and networking components.
(CS1)
1C. Make decisions regarding the selection,
acquisition, and use of software taking under
consideration its quality, appropriateness,
effectiveness, and efficiency. (CS1)
1D. Delineate and make necessary adjustments
regarding compatibility issues including, but not
limited to, digital file formats and cross platform
connectivity. (CS1)
1E. Differentiate current programming languages,
discuss the use of the languages in other fields of
study, and demonstrate knowledge of specific
programming terminology and concepts. (CS1)
1F. Differentiate among the levels of programming
languages including machine, assembly, high-level
compiled and interpreted languages. (CS1)
1G. Demonstrate coding proficiency in a
contemporary programming language. (CS1)
4A. Use local area networks (LANs) and wide area
networks (WANs), including the Internet and
intranet, in research and resource sharing. (CS1)
3B. Demonstrate proper etiquette and knowledge
of acceptable use policies when using networks,
especially resources on the Internet and intranet.
(CS1/CS2)

Basic Programming and PC Skills:

-Use an operating system.

-Use a programming language.

-Use an editor.

-Use a compiler.

-Work as a team.

Number Systems Knowledge and Skills:

1F. Differentiate among the levels of programming
languages including machine, assembly, high-level
compiled and interpreted languages. (CS1)

Number Systems Knowledge and Skills:

-Perform Base Conversions and Arithmetic.

-Use Bitwise operators (<<, >>, >>>, &, ~, |,
^).

UIL Computer Science, Page 2 of 8

Basic Input Knowledge and Skills:

1B. Compare, contrast, and appropriately use the
various input, processing, output, and
primary/secondary storage devices. (CS1)
2A. Demonstrate proficiency in the use of a variety
of input devices such as keyboard. (CS1/CS2)
2B. Use digital keyboarding standards for the input
of data. (CS1/CS2)

Basic Input Knowledge and Skills:

- Use Java Standard Library.

- Use Scanner to perform basic input.

- Use System.out.print().

- Use System.out.println().

- Use System.out.printf().

- Use Escape sequences (\" \\ \n \' \t).

- Use String.split().

- Use Integer.parseInt().

- Use Double.parseDouble()).

- Use Exceptions, throwing standard unchecked
exceptions, checked exceptions (try/catch/finally,
throw, throws).

Data Types Knowledge and Skills:

7A. Apply problem-solving strategies such as
design specifications, modular top-down design,
step-wise refinement, or algorithm development.
(CS1)
7D. Code using various data types. (CS1)
7E. Demonstrate effective use of predefined input
and output procedures for lists of computer
instructions including procedures to protect from
invalid input. (CS1)
7F. Develop coding with correct and efficient use
of expressions and assignment statements
including the use of standard/user-defined
functions, data structures, operators/proper
operator precedence, and
sequential/conditional/repetitive control structures.
(CS1)
7G. Create and use libraries of generic modular
code to be used for efficient programming;
7H. Identify actual and formal parameters and use
value and reference parameters. (CS1)
9B. Use correct programming style to enhance the
readability and functionality of the code such as
spacing, descriptive identifiers, comments, or
documentation. (CS1)

Data Types Knowledge and Skills:

- Use System.out.print().

- Use System.out.println().

- Use System.out.printf().

- Use Primitive types (int, double, boolean, short,
long, byte, char, float), casting of primitives,
autoboxing/unboxing.

- Use Arithmetic operators (+, -, *, /, %, ++, --)
and string concatenation.

- Use ++, --.

- Use assignment operators (=, +=, -=, *=, /=,
%=).

- Convert to supertypes and (Subtype) casts.

- Use instanceof.

- Compare references with == and !=.

- Compare reference contents using equals() and
compareTo().

- Use the Java Standard Library Classes (String,

UIL Computer Science, Page 3 of 8

StringBuffer, Integer, Double, Character, Math,
Random, Object, Comparable, Exception,
Scanner).

Conditional Knowledge and Skills:

7A. Apply problem-solving strategies such as
design specifications, modular top-down design,
step-wise refinement, or algorithm development.
(CS1)
7F. Develop coding with correct and efficient use
of expressions and assignment statements
including the use of standard/user-defined
functions, data structures, operators/proper
operator precedence, and
sequential/conditional/repetitive control structures.
(CS1)
7I. Use control structures such as conditional
statements and iterated, pretest, and posttest
loops. (CS1)
7J. Use sequential, conditional, selection, and
repetition execution control structures such as
menu-driven programs that branch and allow user
input. (CS1)

Conditional Knowledge and Skills:

- Use if statements.

- Use if/else statements.

- Use ternary statements(?:).

- Use switch case statements.

- Use break and continue.

- Use System.out.print().

- Use System.out.println().

- Use System.out.printf().

- Use boolean expressions and operators.

- Use (==, !=, <, <=, >, >=, &&, ||, !, &, |).

- Use and recognize short circuit evaluation.

Looping Knowledge and Skills:

7A. Apply problem-solving strategies such as
design specifications, modular top-down design,
step-wise refinement, or algorithm development.
(CS1)
7E. Demonstrate effective use of predefined input
and output procedures for lists of computer
instructions including procedures to protect from
invalid input. (CS1)
7F. Develop coding with correct and efficient use
of expressions and assignment statements
including the use of standard/user-defined
functions, data structures, operators/proper
operator precedence, and
sequential/conditional/repetitive control structures.
(CS1)
7G. Create and use libraries of generic modular
code to be used for efficient programming;
7I. Use control structures such as conditional
statements and iterated, pretest, and posttest
loops. (CS1)
7J. Use sequential, conditional, selection, and
repetition execution control structures such as
menu-driven programs that branch and allow user
input. (CS1)

Looping Knowledge and Skills:

- Use for loops.

- Use while loops.

- Use do while loops.

- Use nested loops.

- Use the enhanced for loop.

- Use break and continue.

- Use System.out.print().

- Use System.out.println().

- Use System.out.printf().

- Use boolean expressions and operators.

- Use (==, !=, <, <=, >, >=, &&, ||, !, &, |).

- Use and recognize short circuit evaluation.

UIL Computer Science, Page 4 of 8

Parameters Knowledge and Skills:

7H. Identify actual and formal parameters and use
value and reference parameters. (CS1)

Parameters Knowledge and Skills:

- Pass primitive types as parameters.

- Pass references as parameters.

Arrays Knowledge and Skills:

7A. Apply problem-solving strategies such as
design specifications, modular top-down design,
step-wise refinement, or algorithm development.
(CS1)
7C. Develop sequential and iterative algorithms
and codes programs in prevailing computer
languages to solve practical problems modeled
from school and community. (CS1)
7D. Code using various data types. (CS1)
7F. Develop coding with correct and efficient use
of expressions and assignment statements
including the use of standard/user-defined
functions, data structures, operators/proper
operator precedence, and
sequential/conditional/repetitive control structures.
(CS1)
7G. Create and use libraries of generic modular
code to be used for efficient programming. (CS1)
7I. Use control structures such as conditional
statements and iterated, pretest, and posttest
loops. (CS1)
7J. Use sequential, conditional, selection, and
repetition execution control structures such as
menu-driven programs that branch and allow user
input. (CS1)
7K. Identify and use structured data types of one-
dimensional arrays, records, and text files. (CS1)

Arrays Knowledge and Skills:

- Use Primitive types (int, double, boolean, short,
long, byte, char, float), casting of primitives,
autoboxing/unboxing.

- Use one dimensional arrays.

- Use arrays of references.

- Use matrices(arrays of arrays).

- Use initialized arrays.

- Convert to supertypes and (Subtype) casts.

- Use instanceof.

- Compare references with == and !=.

- Compare reference contents using equals() and
compareTo().

- Use Java Collections(Collection, List, Set, Map,
Map.Entry, ArrayList, LinkedList, HashSet, TreeSet,
HashMap, TreeMap, Iterator, ListIterator).

- Use Generic Java Collections(Collection, List, Set,
Map, Map.Entry, ArrayList, LinkedList, HashSet,
TreeSet, HashMap, TreeMap, Iterator,
ListIterator).

- Use Arrays class - Arrays.sort().

-Use Collections class - Collections.sort().

Object Oriented Knowledge and Skills:

1A. Identify object-oriented data types and
delineate the advantages/disadvantages of object
data. (CS2)
1B. Demonstrate coding proficiency in
contemporary programming languages including

Object Oriented Knowledge and Skills:

- Recognize and create classes (constructors,
methods, instance variables, private vs. public,
overloading, overriding, final local variables, static
final class variables, static methods, static non-
final variables).

UIL Computer Science, Page 5 of 8

an object-oriented language. (CS2)
1C. Survey the issues accompanying the
development of large software systems such as
design/implementation teams, software
validation/testing, and risk assessment. (CS2)

- Use constructors.

- Recognize the initialization of static variables,
default initialization of instance variables, static
initialization blocks.

- Use and recognize inheritance, abstract classes,
interfaces and polymorphism.

- Use and recognize null, this, super,
super.method(args), super(args), this.var,
this.method(args), this(args).

Sorting and Searching Knowledge and Skills:

4A. Construct search algorithms including linear
and binary searches. (CS2)
4B. Compare and contrast search and sort
algorithms including linear and binary searches for
different purposes and search time. (CS2)
7D. Identify, describe, and use sequential/non-
sequential files; multidimensional arrays and
arrays of records; and quadratic sort algorithms
such as selection, bubble, or insertion, and more
efficient algorithms including merge, shell, and
quick sorts. (CS2)
7E. Create robust programs with increased
emphasis on design, style, clarity of expression
and documentation for ease of maintenance,
program expansion, reliability, and validity. (CS2)
7F. Apply methods for computing iterative
approximations and statistical algorithms. (CS2)

Sorting and Searching Knowledge and Skills:

-Use and recognize all sorts (Selection, Insertion,
Mergesort, Quicksort).

- Analyze algorithms: informal comparison of
running times, exact calculation of statement
execution counts.

Recursion Knowledge and Skills:

7A. Use appropriately and trace recursion in
program design comparing invariant, iterative, and
recursive algorithms. (CS2)
7J. Use depth-first/breadth-first and heuristic
search strategies. (CS2)

Recursion Knowledge and Skills:

-Determine the output of recursive methods.

-Write recursive methods.

String Manipulation Knowledge and Skills:

7B. Manipulate data structures using string
processing. (CS2)

String Manipulation Knowledge and Skills:

- Use String.split().

- Use Integer.parseInt().

- Use Double.parseDouble()).

- Use and recognize regex (. + * \d \D \s \S \w \W
[abc] [^abc] [a-zA-Z]).

- Use Exceptions, throwing standard unchecked
exceptions, checked exceptions (try/catch/finally,

UIL Computer Science, Page 6 of 8

throw, throws).

- Use the Java Standard Library Classes (String,
StringBuffer, Integer, Double, Character, Math,
Random, Object, Comparable, Exception,
Scanner).

Abstract Data Types Knowledge and Skills:

7G. Define and develop code using the concepts
of abstract data types including stacks, queues,
linked lists, trees, graphs, and information hiding.
(CS2)
7H. Identify and describe the correctness and
complexity of algorithms such as divide and
conquer, backtracking, or greedy algorithms.
(CS2)

Abstract Data Types Knowledge and Skills:

- Use and recognize Stacks, Queues, Binary Trees,
Linked Lists, Heaps, Hash Tables, Priority Queues.

- Use Java Collections(Collection, List, Set, Map,
Map.Entry, ArrayList, LinkedList, HashSet, TreeSet,
HashMap, TreeMap, Iterator, ListIterator).

- Use Generic Java Collections(Collection, List, Set,
Map, Map.Entry, ArrayList, LinkedList, HashSet,
TreeSet, HashMap, TreeMap, Iterator,
ListIterator).

- Use Arrays class - Arrays.sort().

- Use Collections class - Collections.sort()

Analysis of Algorithms Knowledge and Skills:

9A. Demonstrate the ability to read and modify
large programs including the design description
and process development. (CS2)
9B. Analyze algorithms using "big-O" notation,
best, average, and worst case space techniques.
(CS2)
9C. Compare and contrast design methodologies
including top-down and bottom-up. (CS2)
9D. Analyze models used in development of
software including software life cycle models,
design objectives, documentation, and support.
(CS2)

Analysis of Algorithms Knowledge and Skills:

-Use and recognize all sorts (Selection, Insertion,
Mergesort, Quicksort).

- Analyze algorithms: informal comparison of
running times, exact calculation of statement
execution counts.

- Recognize and determine Big-O notation, worst
case/average case time and space analysis.

Hands On Section Knowledge and Skills:

5B. Use a variety of resources, including
foundation and enrichment curricula, together
with various productivity tools to gather authentic
data as a basis for individual and group
programming projects. (CS1/CS2)
6A. Determine and employ methods to evaluate
the design and functionality of the process using
effective coding, design, and test data. (CS1/CS2)
6B. Implement methods for the evaluation of the

Hands On Section Knowledge and Skills:

-Work as a team to solve problems.

-Share one PC in a timed environment.

-Work together to create solutions.

-Work together to repair/improve code.

UIL Computer Science, Page 7 of 8

information using defined rubrics. (CS1/CS2)
8C. Extend the learning environment beyond the
school walls with digital products created to
increase teaching and learning in the foundation
and enrichment curricula. (CS1/CS2)
12A. Write technology specifications for
planning/evaluation rubrics documenting variables,
prompts, and programming code internally and
externally. (CS1/CS2)
12B. Seek and respond to advice from peers and
professionals in evaluating the product (CS1/CS2)
12C. Debug and solve problems using reference
materials and effective strategies (CS1/CS2)

UIL Computer Science, Page 8 of 8

Appendix – Examples of Computer Science Reading List

Big Java, by Cay Horstmann.

How to Prepare for the AP Computer Science Exam (Barron’s Review), by Roselyn Teukolsky.

Java: How to Program, by Deitel & Deitel.

Java Language Specification, by Gosling et al.

Classroom textbook.

