University Interscholastic League
2016 - 2017 Elementary Number Sense Test B

Contestant's Number

\qquad

Read Directions Carefully Before Beginning Test

Do Not Unfold This Sheet Until Told to Begin

Final		
$2^{\text {nd }}$	$=$	
$1^{\text {st }}$	$\overline{\text { Score }}$	$\overline{\text { Initials }}$

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a $\left(^{*}\right.$) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

Stop - Wait for Signal!

(1) $27+16=$
(2) $721-127=$ \qquad
(3) $14 \times 6=$
(4) $11 \times 11=$ \qquad
(5) $2+3+4+5+\ldots+10=$ \qquad
(6) $1 \times 1000+9 \times 100+7 \times 10+4 \times 1=$
(7) $415 \div 5=$

(8) 958307 rounded to the thousands is \qquad $-$
(25) $28 \times 75=$ \qquad
(26) $19 \times 21=$ \qquad
(27) What is the smallest prime number more than 20 ?
(28) Which is larger: $\frac{9}{13}$ or $\frac{3}{4}$? \qquad
(29) $18 \times 22=$ \qquad
(31)

(32) The largest prime number that can divide evenly into 78 is
(33) 11 quarters +7 nickels $=$ \qquad \&
(34) $\frac{9}{10} \div \frac{3}{1000}=$ \qquad
(35) Ten is to eight as fifteen is to n . What is n ? \qquad
(36) If $16 \uparrow \operatorname{cost} 48 \not \subset$, then $12 \uparrow$ cost ___ \varnothing
(37) What is the greatest common divisor of 24 and 32 ?
(38) $\frac{37}{28}-\frac{11}{28}=$ \qquad (common fraction)
(39) $(30 \times 47) \div 7$ has a remainder of \qquad
*(40) $10 \frac{39}{40} \times 2016+17=$ \qquad
(41) If $x=7$, then $12+4 x=$ \qquad
(42) $\frac{3}{4}+\frac{4}{3}-2=$ \qquad (common fraction)
(43) What is the least common multiple of 18 and 24?
(44) What is the perimeter of a square with area $169 \mathrm{~cm}^{2}$?
\qquad cm
(45) 15 years \qquad months
(46) $5 \frac{1}{5} \times 10 \frac{1}{5}=$ \qquad (mixed number)
(47) What is the number, \boldsymbol{k}, in the sequence:
$3,12,27, k, 75,108 \ldots$? \qquad
(48) What is the diameter of a circle with an area of 100π ?
\qquad
(49) $\sqrt{529}=$ \qquad
*(50) 49 gallons $=$ \qquad liquid ounces
(51) What is the perimeter of an equilateral triangle if each side measures $16 \frac{2}{3}$? \qquad
(52) $6 \frac{3}{8}-2 \frac{1}{2}=$
\qquad (mixed number)
(53) $\quad .88=$
(54) If set $A=\{c, e, n, t, r, a, l\}$ and $\operatorname{set} B=\{t, e, x, a, s\}$, then how many elements are in $A \cup B$?

(55) $111 \times 579=$ \qquad
(56) 241 base $6=$ \qquad base 10
(57) $143 \times 28=$ \qquad
(58) What is the area of a triangle with base 8 and height to that base, $4 \frac{1}{2}$? \qquad
(59) If seven times a number is twenty more than twice the number, what is the number? \qquad
*(60) $44 \frac{4}{9} \times 182=$
(61) $(-10)+(-3) \times(5)=$ \qquad
(62) $23 \times 27=$ \qquad
(63) The additive inverse of $-\frac{2}{3}$ is \qquad
(64) What is the area of a rectangle with sides 25 cm and $4 \frac{1}{5} \mathrm{~cm}$? \qquad cm^{2}
(65) What is the area of a square whose diagonal is 8 inches? \qquad $i n^{2}$
(66) What is the volume of a rectangular box that measures $6 \frac{1}{2} \mathrm{~cm}$ by 11 cm by 4 cm ? \qquad cm^{3}
(67) $9-10+11-12=$ \qquad
(68) $2^{5}=$ \qquad
(69) $28($ base 10$)=$ \qquad (base 4)
*(70) $13^{2} \times 11^{2}=$ \qquad
(71) $32 \times 37 \frac{1}{2}=$ \qquad
(72) What is the area of a trapezoid with bases 5 in., 7 in. and altitude 12 in.? \qquad in^{2}
(73) If $4 x-11<53$, then $x<$ \qquad
(74) $71^{2}=$ \qquad
(75) What is the distance between negative nineteen and positive twelve on the number line? \qquad If a single card is pulled from a standard deck of 52 cards, what is the probability that a red ace will be drawn? \qquad
(77)
18% of what is the same as 36% of 54 ? \qquad
If the angles of a triangle are 24° and 46°, what is the measure of the third angle? \qquad ${ }^{\circ}$
(79) $66^{2}+22^{2}=$ \qquad
*(80) $124 \times 16+8 \times 180=$ \qquad

(1)	43	(26)	399	(44)	52	(61)	-25
(2)	594	(27)	23	(45)	180	(62)	621
(3) (4)	84 121	(28)	$\frac{3}{4} ; .75$	(46)	$53 \frac{1}{25}$	(63)	$\frac{2}{3}$
(5)	54	(29)	396	(47)	48	(64)	105
(6)	1974	*(30)	18202-20116	(48)	20	(65)	32
(7)	83	(31)	56	(49)	23	(66)	286
(8)	958000	(32)	13	*(50)	5959-6585	(67)	-2
(9)	165	(33)	310	(51)	50	(68)	32
*(10)	94147-104057	(34)	300	(52)	$3 \xrightarrow{7}$	(69)	130
(11)	72	(35)	12		8	*(70)	$19427-21471$
(12)	2	(36)	36	(53)	$\frac{22}{25}$	(71)	1200
(13)	3	(37)	8		-	(72)	72
(14)	1925	(38)	$\underline{13}$	(54)	9	(73)	16
(15)	312		14	(55)	64269	(74)	5041
(16)	1700	(39)	3			(75)	31
(17)	26	*(40)	21036-23249	(57)	4004		1
(18)	18	(41)	40	(58)	18)	26
(19)	285	(42)	1	(59)	4	(77)	108
*(20)	3619-3999		12	*(60)	7685-8493	(78)	110
(21)	8645	(43)	72			(79)	4840
(22)	$\frac{5}{6}$					*(80)	3253-3595
(23)	28						
(24)	2						
(25)	2100						

Note: *(Number) $\mathrm{x}-\mathrm{y}$ means an integer between x and y inclusive.
If an answer is of the type like $2 / 3$ it cannot be written as $.666 \ldots$ or $\overline{6}$.

