
UIL – Computer Science Programming Packet – Region - 2025

1

Computer Science Competition

Region 2025
Programming Problem Set

I. General Notes

1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.

2. All problems have a value of 60 points.

3. There is no extraneous input. All input is exactly as specified in the problem. Unless
specified by the problem, integer inputs will not have leading zeros. Unless otherwise
specified, your program should read to the end of file.

4. Your program should not print extraneous output. Follow the form exactly as given in the

problem.

5. A penalty of 5 points will be assessed each time that an incorrect solution is submitted.
This penalty will only be assessed if a solution is ultimately judged as correct.

II. Names of Problems

Number Name
Problem 1 Arlo
Problem 2 Cole
Problem 3 Elijah
Problem 4 Emerson
Problem 5 Kai
Problem 6 Khan
Problem 7 Melina
Problem 8 Mike
Problem 9 Raymond

Problem 10 Remy
Problem 11 Saim
Problem 12 Veerasamy

UIL – Computer Science Programming Packet – Region - 2025

2

1. Arlo
 Program Name: Arlo.java Input File: none

Arlo is drilling to try out for the yell squad at his school. He needs to chant the phrase “Let's go Tyrannosauruses!” exactly 15
times.

Input: none

Output: Print the phrase “Let's go Tyrannosauruses!” 15 times.

Sample input:
None

Sample output:
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!
Let's go Tyrannosauruses!

UIL – Computer Science Programming Packet – Region - 2025

3

2. Cole
 Program Name: Cole.java Input File: cole.dat

Cole is revisiting his old favorite game, Factorio, now with a new DLC. A core mechanic of the game is automation — namely,
anything that can be crafted can also be automated using Assembling Machines. These machines take inputs, process recipes,
and produce outputs, which can then be used in more advanced recipes.

Previously, Cole relied on online guides to determine the correct input-output ratios. Now, he’s much smarter, and wants to
calculate them himself. Given a set of crafting recipes and a target production rate for a specific item, determine how many
assembling machines are needed for each input.

Input: The first line will consist of two space-separated integers 𝑅 and 𝑄, (1 ≤ 𝑅 ≤ 300, 1 ≤ 𝑄 ≤ 10!), denoting the number
of crafting recipes and queries. The next 𝑅 lines will all take the same format:

𝑆, 𝑝/𝑡, 𝑛, (𝑖", 𝑞"), (𝑖#, 𝑞#), … , (𝑖$, 𝑞$)

Where…
• 𝑆 is the item name.
• 𝑝 is the number of items produced per crafting cycle.
• 𝑡 is the time taken per crafting cycle.
• 𝑛 is the number of inputs required.
• Each pair (𝑖% , 𝑞%) represents an input item and its required quantity.

Raw ingredients (available infinitely, but take time to harvest) have 𝑛 = 0, 𝑝 = 1, and 𝑡 = 1, will be written as:

𝑆, 1/1, 0

Every input item in a recipe is guaranteed to have a corresponding entry among the 𝑅 recipes. Moreover, there are no cycles in
the dependencies, and there will be at least one crafting recipe that is a raw ingredient.

The next 𝑄 lines contain queries in the format "𝐴, 𝑟" where 𝐴 is the item to be produced, and 𝑟 (10&! < 𝑟 ≤ 10') is the desired
output rate per second (up to 5 decimal places). 𝐴 is guaranteed to be in the recipes.

Output: For each of Cole’s 𝑄 queries…

1. Print "𝐴	(𝑟):”, where 𝑟 is formatted to 5 decimal places.
2. For each required input (𝑖%), print a tab followed by "𝑖%:	𝑎%", where 𝑎% is the number of assembling machines needed,

rounded to the nearest whole number. List inputs in lexicographical order.

Note that we are assuming that 𝑟 is an average rate that needs to be met over an effectively infinite amount of time and need not
be satisfied at rate 𝑟 immediately.

Hint: To avoid floating-point precision errors when rounding, subtract a small value ε = 10&' before rounding.

~ Sample input and output on next page ~

UIL – Computer Science Programming Packet – Region - 2025

4

~ Cole continued ~

Sample input: (indented lines are a continuation of the previous line)
10 3
ExpressTransportBelt, 1/0.5, 3, (FastTransportBelt, 1), (IronGearWheel, 10),

(Lubricant, 20)
FastTransportBelt, 1/0.5, 2, (TransportBelt, 1), (IronGearWheel, 5)
TransportBelt, 2/0.5, 2, (IronGearWheel, 1), (IronPlate, 1)
IronGearWheel, 1/0.5, 1, (IronPlate, 2)
IronPlate, 1/3.2, 1, (IronOre, 1)
Lubricant, 10/1, 1, (HeavyOil, 10)
HeavyOil, 25/5, 2, (CrudeOil, 100), (Water, 50)
IronOre, 1/1, 0
CrudeOil, 1/1, 0
Water, 1/1, 0
TransportBelt, 20
FastTransportBelt, 10
ExpressTransportBelt, 5

Sample output:
TransportBelt (20.00000/s):
 IronGearWheel: 5
 IronOre: 30
 IronPlate: 96
 TransportBelt: 5
FastTransportBelt (10.00000/s):
 FastTransportBelt: 5
 IronGearWheel: 28
 IronOre: 115
 IronPlate: 368
 TransportBelt: 3
ExpressTransportBelt (5.00000/s):
 CrudeOil: 400
 ExpressTransportBelt: 3
 FastTransportBelt: 3
 HeavyOil: 20
 IronGearWheel: 39
 IronOre: 158
 IronPlate: 504
 Lubricant: 10
 TransportBelt: 2
 Water: 200

UIL – Computer Science Programming Packet – Region - 2025

5

3. Elijah
 Program Name: Elijah.java Input File: elijah.dat

Elijah is working on writing a program that rotates images, but he’s having trouble figuring it out. He knows you’re quite apt at
programming and has enlisted you to help him out.

Input: The first input line will contain a single number N (1 <= N <= 100) denoting the number of inputs to follow. Each input
will start with two values R, C (1 <= R, C <= 100) denoting the number of rows and columns respectively of the image to
follow. The following R lines will contain C characters, representing the image Elijah is supposed to rotate. The final line of
each input will be a single value V (1 <= V <= 10^20) denoting the number of degrees to rotate the image.

Note: V is guaranteed to be a multiple of 90, and all rotations are clockwise.

Output: Output each image rotated with a blank line separating each image.

Sample input:
1
11 10
@@@@@@@@@@
@ @
@ **** @
@ * * @
@ * * @
@ * * @
@ * * @
@ * * @
@ **** @
@ @
@@@@@@@@@@
90

Sample output:
@@@@@@@@@@@
@ @
@ @
@ ******* @
@ * * @
@ * * @
@ ******* @
@ @
@ @
@@@@@@@@@@@

UIL – Computer Science Programming Packet – Region - 2025

6

4. Emerson
 Program Name: Emerson.java Input File: emerson.dat

Emerson has designed a new video game for you to test. It’s a maze solving game, with a portal gun. You need to determine the
shortest path to escape each level of the maze, if you use the portal gun optimally. The portal gun will have a specified number
of charges, and each charge will make a portal from your current position, to any position that is 2 spaces away, or 1 diagonally
(2 up, 1 up 1 left, 2 left, 1 left 1 down, 2 down, 1 down 1 right, 2 right, 1 right 1 up), and using a portal will not count as a step.
When not using a portal, you can only move in the 4 cardinal directions (up, down, left, right). The maze will be made up of
empty paths, walls, and land-sharks which you cannot get within 2 spaces in front of whichever direction they are facing
(including when entering or exiting a portal). The start and end points of the maze will never be within the restricted area of a
land shark.

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case
will consist of three integers, separated by a space, r, c, and p (0 < r,c <= 250 0 < p < 13), denoting the number of
rows and columns in the maze level, and the number of “charges” the portal gun has. The following r lines will each contain c
characters denoting the layout of the maze level, which will be made up of the following:

● . – Denotes an empty space in the level, where you can walk.
● # – Denotes a wall in the level, an impassable object.
● S – Denotes the starting point for the level.
● E – Denotes the end point of the level.
● < > ^ v – Any of the preceding characters will denote a land shark, with the direction their “mouth” is pointed being

the direction they are facing (< is right, > is left, ^ is down, v is up). Land sharks do not move throughout the maze,
they are rather lazy.

Output: For each test case, output the minimum amount of steps required to get from the starting point to the ending point of
the maze. If this is not possible, output -1.

Sample input:
2
6 7 2
S..<...
..#..vE
#..##..
^....##
..>..#.
....v..
8 4 1
E..>
..#.
.#.v
##..
<...
.#.#
S..#

Sample output:
3
-1

UIL – Computer Science Programming Packet – Region - 2025

7

5. Kai
 Program Name: Kai.java Input File: kai.dat

It’s springtime and Kai hears the familiar sound of baby chicks coming from his family’s chicken coop in the back yard. Kai
decides it’s time for a parade of the new chicks. Display the chicks in a row based on the number of chicks in the data file.

Input: The input will consist of a single integer N (1 <= N <= 10) representing the number of chicks to display in the parade.

Output: The given parade of chicks in the form as shown below.

Sample input:
3

Sample output:
 _ _ _
(*> (*> (*>
//\ //\ //\
V_/_V_/_V_/_

UIL – Computer Science Programming Packet – Region - 2025

8

6. Khan
 Program Name: Khan.java Input File: khan.dat
Khan is the original person that the “House Robber” problem (also known as the “Knapsack” problem) was written about. What
often doesn’t get talked about with the house robber problem is that after successfully optimizing which items Khan places in his
knapsack, he now must escape the house he has just robbed. However, in his desire to have perfectly optimized the items in his
bag, he has taken too long and has triggered the alarm of the house! However, thankfully for Khan’s sake, the homeowner is
using an experimental alarm which is comprised of a series of sensors that incrementally turn on. That is, at time 𝑡 = 1, sensor 1
turns on and can detect any moving entity within its detection radius. At time 𝑡 = 2, sensor 2 can do the same, and so on. Khan
has managed to make his way to the final hallway; however, this is the most complex of them all so far. Help Khan determine
how much time he has left before he will be unable to navigate out of the final hallway and make it to the door without being
detected.

Input: The first line of input will consist of a single integer, 𝑇 (1 ≤ 𝑇 ≤ 10#), denoting the number of testcases to follow. Each
testcase will begin with two space-separated integers 𝑛((1 ≤ 𝑛(≤ 10!) and 𝑤((1 ≤ 𝑤(≤ 2"'), denoting the number of sensors
and the width of the hall for the 𝑖th testcase, respectively. The following 𝑛(lines will each contain three space-separated floating
points 𝑥+ , 𝑦+ , 𝑟+, the 𝑗th of which denotes the (𝑥+ , 𝑦+) center and effective radius of the 𝑗th sensor. You may assume that 0 ≤ 𝑥+ ≤
𝑤(, 0 ≤ 𝑦+ ≤ 10 ⋅ 𝑤(, and 0 < 𝑟+ ≤ 𝑤(for all 𝑗.

Output: For each of Khan’s 𝑇 escape situations, on its own line, print out a single integer 𝑡(, denoting the maximum amount of
time that Khan has before he is unable to escape undetected. If Khan is free to leave undetected after all 𝑛 sensors turn on,
instead print “Completely Undetected.”. You may assume that Khan may be represented as a point and, as a result, if
two circles are tangential to one another, their single point of intersection blocks Khan. Moreover, assume the hall occupies the
space starting from 𝑥 = 0 to 𝑥 = 𝑤(. If it is impossible for Khan to escape if the first sensor turns on, print 0 indicating that
Khan should have left sooner. Lastly, for your answer to be considered correct, ensure that floating point comparisons are
accurate within an absolute error/precision of ε = 10&'.

~ Sample input and output on next page ~

UIL – Computer Science Programming Packet – Region - 2025

9

~ Khan continued ~

Sample input:
5
9 10
1.0 3.0 2.0
2.1 5.2 1.5
7.793 9.93 2.611
6.548 4.774 1.546
4.255 13.488 3.031
8.375 2.341 1.812
1.023 12.274 1.543
7.523 7.074 1.563
4.372 6.834 1.702
6 15
2.7 17.1 4.35
12.3 16.8 4.35
6.6 12.75 3.15
6.975 7.875 3.15
12.525 6.375 4.35
2.1 3.3 4.35
6 25
4.5 28.5 7.25
3.5 5.5 7.25
20.5 28 7.25
11 21.25 5.25
11.625 13.125 5.25
20.875 10.625 7.25
6 13
1.82 2.86 3.77
2.34 14.82 3.77
5.72 11.05 2.73
6.045 6.825 2.73
10.66 14.56 3.77
10.855 5.525 3.77
3 7
3.5 5.25 3.535
1.05 1.05 0.35
5.95 1.05 3.5

Sample output:
6
2
3
4
0

UIL – Computer Science Programming Packet – Region - 2025

10

7. Melina

 Program Name: Melina.java Input File: melina.dat

You have made a new friend, Melina. She has trouble counting sometimes, but she recently accepted a job as a cashier at a taco
shop. You need to write a program to determine how many different ways she can make the change required by the purchase
each customer makes, given the money denominations she has in the cash register.

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case
will consist of two lines. The first will contain two space-separated floating-point numbers, a and t, denoting the amount the
customer paid, and the amount that was due. The following line will contain an unspecified number of space-separated integers
denoting all the possible denominations of money Melina can use to make change, it can be assumed for our purpose that you
have access to an infinite number of each denomination. Denominations will never be smaller than .01 (1 cent), and neither a
or t will exceed two decimal places. Additionally, a is guaranteed to be larger than t, and the difference between the two will
never exceed 10^9.

Output: For each test case, output the number of possible combinations Melina can make to make the amount of change
required by the purchase each customer made.

Sample input:
3
25 24.78
.01 .05 .10 .25 1
40 39.15
.01 .05 .10 .25 1
50.26 41.95
.01 .05 .10 .25 1 2 5 10

Sample output:
9
163
332365

UIL – Computer Science Programming Packet – Region - 2025

11

8. Mike
 Program Name: Mike.java Input File: mike.dat

You’ve been volunteering at the local animal shelter in your free time, in particular, you’ve been put in charge of the cats. Your
boss, Mike, has asked you to put in the order for cat food this month. When you asked him how that’s typically done he said that
the shelter just orders some massive amount of each food, and rotates through them every day. You, however, have noticed that
some cats like certain flavors of cat food and won’t even eat others. You’ve gone through the liberty of finding out which
flavors the cats like to eat when they eat, and how much they eat at a time. You’ve asked your boss if you can order based on
this data and he says sure but only if you spend as little money as possible.

Input: The first input line will contain a single value N (1 ≤ N ≤ 100) denoting the number of test cases to follow. Each test
case will start with a value M (1 ≤ M ≤ 1000) that denotes the number of cat feedings that follow. The next M lines will be in
the form of T, A, and B (1 ≤ A ≤ 1000). T is the hour, minute, and second that this cat will be fed. A is the amount of food in
ounces that the cat eats at time T. B is the brand of food that the cat is fed at time T. Each test case will end by enumerating all
brands B required to feed all cats. Each brand will have an input line that starts with the brand name and then a list of
purchasable cans of food. The list of purchasable food will take the form of C:W:P where C (1 ≤ C ≤ 100) is the number of
cans in this package, W (1 ≤ W ≤ 1000) is the weight of each can of food in ounces, and P is the price of this package rounded
to the nearest cent.

W is guaranteed to be an integer, and every brand will at least have single one-ounce cans for sale.

Output: Output “Total cost to feed all cats: ” followed by the least amount of money you need to spend to feed
all the cats their desired foods, rounded to the nearest cent with commas where required.

Note that you cannot have less food than required to feed all cats, but you may have extra.

Sample input:
1
10
20:43:13 3.55 super-premium
17:48:10 0.01 premium
13:40:36 4.08 premium
12:11:33 0.58 normal
06:27:30 2.62 super-premium
02:38:30 0.76 premium
12:14:50 1.96 super-premium
11:49:22 3.51 normal
08:42:20 0.30 generic
02:59:08 4.38 generic
normal 1:1:1.14 6:5:15.25 12:3:19.67
generic 1:1:0.98 6:3:12.52 24:5:33.17
premium 1:1:1.99 6:5:25.99 12:3:39.99
super-premium 1:1:5.99 6:5:79.99 12:12:212.12

Sample output:
Total cost to feed all cats: $74.46

UIL – Computer Science Programming Packet – Region - 2025

12

9. Raymond
 Program Name: Raymond.java Input File: raymond.dat

Your classmate Raymond is a bit of an idiot. You’ve explained to him countless times what LCM (Lowest Common Multiple)
means and how to find it between two numbers but he just doesn’t get it. Feeling sorry for him, you’ve decided to go ahead and
just write a program that given a list of numbers will let Raymond know the LCM.

Input: The first input line will contain a value N (1 ≤ N ≤ 100) denoting the number of test cases. Each test case will start with
a single value M (1 ≤ M ≤ 100) representing the number of values in the list. The next line will contain M integers A such that
(1 ≤ A ≤ 1000), of which you are to find the LCM between them all.

Output: Output “Lowest Common Multiple is X” where X is the lowest common multiple. If the LCM is 1, then
instead print “LCM NUMBER 1!” to give Raymond a little excitement.

Sample input:
2
5
1 1 1 1 1
3
159 261 932

Sample output:
LCM NUMBER 1!
Lowest Common Multiple is 12892356

UIL – Computer Science Programming Packet – Region - 2025

13

10. Remy
 Program Name: Remy.java Input File: remy.dat

The IT department of the store where Remy is working has been having some issues with their website recently. Remy has been
tasked with analyzing their log file to gather some data. There are five (5) items to report: the total number of requests listed in
the log file, the number of unique IP addresses that made requests, the IP address that made the most requests and the number of
requests it made, the percentage of requests that resulted in an error status code (4xx or 5xx), and the most requested URL and
the number of times it was requested.

Input: The data file consists of an unspecified number of lines in the following format:

[Timestamp] IP_Address HTTP_Method URL Status_Code

• Timestamp: The date and time of the request in the format YYYY-MM-DD HH:MM:SS.
• IP_Address: The IP address of the client making the request.
• HTTP_Method: The HTTP method used (e.g., GET, POST, PUT, DELETE).
• URL: The URL that was requested.
• Status_Code: The HTTP status code returned by the server (e.g., 200 for OK, 404 for Not Found, 500 for Server

Error).

Output: see sample output below for required wording and formatting

• Print the total number of requests.
• Print the number of unique IP addresses.
• Print the most frequent IP address and the number of requests it made.
• Print the error rate as a percentage, rounded to two decimal places.
• Print the most requested URL and the number of requests it received.

Sample input:
[2024-10-27 10:00:00] 192.168.1.1 GET /index.html 200
[2024-10-27 10:00:05] 192.168.1.2 POST /login 200
[2024-10-27 10:00:10] 192.168.1.1 GET /index.html 200
[2024-10-27 10:00:15] 192.168.1.3 GET /products 404
[2024-10-27 10:00:20] 192.168.1.1 GET /about 200
[2024-10-27 10:00:25] 192.168.1.4 POST /submit 500
[2024-10-27 10:00:30] 192.168.1.2 GET /index.html 200

Sample output:
Total requests: 7
Unique IP addresses: 4
Most frequent IP address: 192.168.1.1 (3 requests)
Error rate: 28.57%
Most requested URL: /index.html (3 requests)

UIL – Computer Science Programming Packet – Region - 2025

14

11. Saim
 Program Name: Saim.java Input File: saim.dat

Saim is a new kid in your class and you’ve decided you’re going to be his friend. He really likes the video game Mortal
Kombat. You have built your own version of this game called Kortal Mombat to play with him. You need to write a program to
read in the commands given and determine who wins each game. The game is similar to most fighting games, where two
characters face off, doing different actions until one character runs out of health. You will go first, doing one action, then Saim
will go (you get advantage because Saim is an experienced player). Kortal Mombat has 4 different character options who do
different damage and healing, and each character will have 4 possible actions they can take, as follows:

● RT – This is the character’s primary attack, it will do a certain amount of damage, depending on the character.
● LT – This is the block, each character has the same block. This will negate the damage of the next attack by the

opponent, but will do nothing if the next move by the opponent is not an attack.
● RB – This will be a secondary attack, typically does more damage, but you will take double damage from the

opponent’s next attack.
● LB – This will be a heal, which will add a small amount of health back to your character.

The 4 characters are as follows:
Character RT Damage RB Damage LB Health Gained Total Health

A 100 200 40 1000

B 100 260 20 1500

C 120 220 50 800

D 80 150 80 1000

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case
will begin with a line containing 2 chars denoting the characters chosen by you and Saim respectively, followed by an integer m
denoting the number of commands each of you input. The following line will contain m commands (from the 4 above actions
you can take), denoting the actions you took in the game. The line after will contain the same information for Saim. If one
character’s health goes to 0 before the end of the line, they lose, and you should ignore the rest of the line. When m=0, there will
be no following input lines for that case.

Output: For each test case, output the name of the winner, either “You” or “Saim”. If you get to the end of both player’s
actions and neither has won, output “Draw”. After all test cases, output your record, in the format W-D-L, where W is the
number of your wins, D is the number of your draws, and L is the number of your losses.

Sample input:
2
A B 9
RT RT RT RB LB RT RT RT RT
RB RT RB RT RB RT RB RB RT
A C 9
RB RB RT RT RB RB RT RT RB
RB LB RB LB RB LB RB LB RB

Sample output:
Saim
You
1-0-1

UIL – Computer Science Programming Packet – Region - 2025

15

12. Veerasamy
 Program Name: Veerasamy.java Input File: veerasamy.dat
Veerasamy has recently found himself confined to two dimensions and is very confused by this planar projection. He has
several questions related to his recent transformation, including why he is now only being represented as a single point, but he is
really curious in knowing whether he is still inside the “room” he was in back when he was in three-dimensional space. Help
Veerasamy among his confusion determine if he is still contained within the, now two-dimensional, representation of the room
he was in.

Input: The first line of input will consist of a single integer, 𝑇 (1 ≤ 𝑇 ≤ 10,), denoting the number of testcases to follow. Each
testcase will begin with an integer 𝑛 (3 ≤ 𝑛 ≤ 10,) denoting the number of points that comprise the simple polygon 𝑃 followed
by a space and either the word "Convex" or "Concave" indicating whether the polygon is convex or concave. The next 𝑛 +
1 lines will consist of two space-separated floating-point numbers 𝑥(and 𝑦(, (−10! ≤ 𝑥(, 𝑦(≤ 10!) denoting the 𝑥- and 𝑦-
coordinate of the 𝑖th point (𝑝(), the last of which denotes the point 𝑞 (Veerasamy’s location), which is not a part of the polygon.
The polygon is formed by creating an edge between 𝑝(and 𝑝((.")	mod	$ for all 1 ≤ 𝑖 ≤ 𝑛. It should be noted that the points of 𝑃
will be listed starting from the left-most point, proceeding along the incident edge that is clockwise from the first point,
continuing along the unvisited incident edge of 𝑝(, until 𝑝$ (which has an edge with 𝑝"). Lastly, general position can be assumed
(no two points share the same 𝑥-coordinate / 𝑦-coordinate; no three points are collinear).

Output: For each of Veerasamy’s 𝑇 situations, on its own line, either print "Safe and sound." if Veerasamy is still in his
room (inside of polygon 𝑃), or print "Dreaded dimensional downgrade!" if he no longer is in his room (outside of
polygon 𝑃).

Sample input:
3
15 Concave
1.44 2.65
2.64 4.76
3.54 3.06
4.14 5.32
5.10 3.94
7.68 4.78
8.60 3.12
7.02 2.6
7.26 3.72
6.36 3.94
5.54 2.72
7.76 1.52
6.82 0.02
4.26 0.00
2.46 1.26
6.40 1.30

9 Convex
1.44 2.65
2.64 4.76
4.14 5.32
7.68 4.78
8.60 3.12
7.76 1.52
6.82 0.02
4.26 0.00
2.46 1.26
6.40 1.30

9 Convex
1.44 2.65
2.64 4.76
4.14 5.32
7.68 4.78
8.60 3.12
7.76 1.52
6.82 0.02
4.26 0.00
2.46 1.26
8.25 5.00

Sample output:
Safe and sound.
Safe and sound.
Dreaded dimensional downgrade!

