
 UIL CS • Guide to Lambda Expressions • page 1 of 4

Lambda Expressions

Guide for UIL Written Exam

The following is meant as a guide only. This guide is an introduction to the concept of lambda

expressions. Contestants should seek out resources that provide a thorough explanation of the nature

and use of lambda expressions that goes beyond this guide.

The following is quoted directly from Wikipedia

(https://en.wikipedia.org/wiki/Anonymous_function#Java)

A lambda expression consists of a comma separated list of the formal
parameters enclosed in parentheses, an arrow token (->), and a
body. Data types of the parameters can always be omitted, as can
the parentheses if there is only one parameter. The body can consist
of one statement or a statement block.

// with no parameter

() -> System.out.println("Hello, world.")

// with one parameter (this example is an

identity function).

a -> a

// with one expression

(a, b) -> a + b

// with explicit type information

(long id, String name) -> "id: " + id + ", name:"

+ name

// with a code block

(a, b) -> { return a + b; }

Before you can begin to use a lambda expression there must first be a functional interface. A functional

interface is any interface that contains only one abstract method. Once a functional interface has been

defined, a variable of that type can be declared and a lambda expression can be assigned to that

variable.

Here are a few examples that demonstrate how to use lambda expressions.

https://en.wikipedia.org/wiki/Anonymous_function#Java

 UIL CS • Guide to Lambda Expressions • page 2 of 4

1. Simple output.

public class LambdaExamples {

 public static void main(String[] args) {

 FunctionalInterface lamb = s->System.out.print(s);

 lamb.doSomething("UIL");

 }

 interface FunctionalInterface{

 public void doSomething(String str);

 }

}

s->System.out.print(s)is the lambda expression in this example. s serves as the argument that

is passed to the formal parameter str in the doSomething method defined in the

FunctionalInterface interface. System.out.print(s); serves as the implementation of

the body of the doSomething method. This class will print UIL to the console.

2. The body of the lambda expression can be more than one line. If this is the

case, the body must be enclosed within curly braces as shown here.

FunctionalInterface lamb = s->{System.out.println(s);

 System.out.print(s.length());};

lamb.doSomething("UIL");

Changing the body of the lambda expression in this way will cause the program to print

UIL

3

3. A lambda expression must have the same number of arguments as the

abstract method has parameters. When the lambda expression has more than

one argument, the arguments must be enclosed in parenthesis. Here is an

example.

public static void main(String[] args) {

FunctionalInterface lamb = (s,t)->{System.out.println(s);

 System.out.println(t);

 System.out.println(s+" and "+t);};

lamb.doSomething("UIL","CS");

}

interface FunctionalInterface{

 public void doSomething(String str1,String str2);

}

The output for this code segment would be

UIL

CS

UIL and CS

 UIL CS • Guide to Lambda Expressions • page 3 of 4

4. One final example using this code segment shows how to create a lambda

expression with no arguments and a one line body.

public static void main(String[] args) {

 FunctionalInterface lamb = ()->System.out.println("UIL and CS");

 lamb.doSomething();

 }

interface FunctionalInterface{

 public void doSomething();

}

Of course, this code will print UIL and CS.

The java.util.function package.

The Java API describes the java.util.function package like this.

"The interfaces in this package are general purpose functional interfaces used by

the JDK, and are available to be used by user code as well. While they do not
identify a complete set of function shapes to which lambda expressions might be

adapted, they provide enough to cover common requirements."

A list of these interfaces can be found here:

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-

summary.html

If the programmer needs to accomplish one of the common tasks covered by the interfaces available in

the java.util.function package they only need to import the package and then use the interfaces.

The UIL Written Exam will be limited to the following interfaces in the java.util.function package:

• Predicate and BiPredicate

• Function and BiFunction

• Supplier

• Consumer and BiConsumer

A description of these interfaces will be available in the STANDARD CLASSES AND INTERFACES –

SUPPLEMENTAL REFERENCE supplied to each contestant for each contest.

Examples using Consumer

The Java API describes the Consumer interface as follows:

public interface Consumer<T>

Represents an operation that accepts a single input argument and returns no

result. Unlike most other functional interfaces, Consumer is expected to

operate via side-effects.

This is a functional interface whose functional method is accept(Object).

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Consumer.html#accept(T)

 UIL CS • Guide to Lambda Expressions • page 4 of 4

The method description is

void accept(T t)

Performs this operation on the given argument.

Parameters: t - the input argument

1. Example that just prints.

import java.util.function.Consumer;

public class LambdaExamples {

 public static void main(String[] args) {

 Consumer<String> print = s -> System.out.print(s);

 print.accept("Hello!");

 }

}

First the Consumer interface must be imported. A variable named print of type Consumer that is

parameterized to be a String is declared and the lambda expression s ->

System.out.print(s); is assigned to that variable. The last line uses the object print to call the

method accept and the string "Hello!" is printed in the console.

2. Example to do some arithmetic.

import java.util.function.Consumer;

public class LambdaExamples {

 public static void main(String[] args) {

 int num = 10;

 Consumer<Integer> print = i -> {i++;System.out.print(i);};

 print.accept(num);

 }

}

This example accepts an Integer, adds one to it and prints the result. In this case, 11.

forEach method

Most data structures that are of type Collection contain a forEach method that accepts a

Consumer object as an argument. The forEach method will then perform the action specified by the

lambda expression assigned to the argument on all elements in the Collection.

We can use the forEach method to simply print all of the elements in an ArrayList.

import java.util.function.Consumer;

import java.util.ArrayList;

public class LambdaExamples {

 public static void main(String[] args) {

 ArrayList<Integer> list = new ArrayList<Integer>();

 list.add(5);list.add(12);list.add(18);

 list.add(9);list.add(4);list.add(25);

 list.forEach(i -> System.out.println(i));

 }

}

We can change the lambda expression so that our code will print each value in an ArrayList times 2.

list.forEach(i -> {i*=2;System.out.println(i);});

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Consumer.html

