
UIL – Computer Science Programming Packet – State - 2024

 1

Computer Science Competition

State 2024
Programming Problem Set

I. General Notes

1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.

2. All problems have a value of 60 points.

3. There is no extraneous input. All input is exactly as specified in the problem. Unless
specified by the problem, integer inputs will not have leading zeros. Unless otherwise
specified, your program should read to the end of file.

4. Your program should not print extraneous output. Follow the form exactly as given in the

problem.

5. A penalty of 5 points will be assessed each time that an incorrect solution is submitted.
This penalty will only be assessed if a solution is ultimately judged as correct.

II. Names of Problems

Number Name

Problem 1 Ace

Problem 2 Bart

Problem 3 Ben

Problem 4 Bethany

Problem 5 Conrad

Problem 6 Dilbert

Problem 7 Jason

Problem 8 Lina

Problem 9 Max

Problem 10 Nicholas

Problem 11 Rufus

Problem 12 Victoria

UIL – Computer Science Programming Packet – State - 2024

 2

1. Ace

 Program Name: Ace.java Input File: None

You could call Ace the "Historian of UIL Academics." He has seen it all. He did Number Sense and Slide Rule in high school.

He has coached nearly every event. He, to this day, follows the competition by poring through the scores posted for the District,

Regional, and State Meets.

If you walk by his house on a Friday afternoon and sit on the porch with him and have some iced tea, he will tell you some

stories about the rich history of UIL Academics.

Just the other day, he was telling me about the UIL Computer Science contest. It first came onto the scene in 1990 with a format

just a bit different that the format it follows today. When I saw him, he was remembering the 1999 contest. Of course, this year

marks the 25th anniversary of that event. That was way back before there was a 6A classification.

He recalls that the 5A champion, Langham Creek, almost missed the Saturday programming portion of the contest. They were

dropped off at Painter Hall which had been the site of the Friday night written test. But, programming in 1999 was held in the

brand new UIL Building on Manor Road. The team had to hike over a mile uphill with PCs and printers in tow and made it with

only minutes to spare. Ah, those were the days.

Let's print out a list of the 1999 UIL CompSci Champions for Ace.

Input: None.

Output: Print the information below that lists the 1999 UIL State CompSci Champions. You will notice there are 6 dashes

(minus signs) in the output.

Sample input: None.

Sample output:
UIL CompSci State Champion Teams

25 Years Ago - 1999

5A - Houston Langham Creek HS

4A - Fort Worth Dunbar HS

3A - Devine HS

2A - Stockdale HS

1A - Muenster HS

UIL – Computer Science Programming Packet – State - 2024

 3

2. Bart

 Program Name: Bart.java Input File: bart.dat

You and Bart have been experimenting with quantum physics lately, and have learned how to make one way portals. Now Bart

has devised a test for your portals. He has designed a maze of sorts, with these portals inside, and your job is to navigate through

the maze and find the shortest path to escape. He has also coincidentally created a black hole within the maze, which you need

to avoid. You will be given a map of the maze, and it will be made up of the following characters:

● '$' – This character denotes the starting point of the maze, where you will begin your journey.

● '^' – This character denotes the exit from the maze, where you will end your journey.

● '#' – This character denotes a wall, an area that is permanently impassable.

● '.' – This character denotes an open space, which is passable at a rate of 1 space per second.

● '[A-Z]' – These characters denote the entrance to a portal. When you enter a portal, it takes a certain amount of

time, then you are at the exit block (the amount of time is equal to the letter’s position in the alphabet (a = 1, b = 2, and

so on)).

● '[a-z]' – These characters denote the exit from a portal. When you enter a portal, it takes a certain amount of time,

then you are at the exit block (the amount of time is equal to the letter’s position in the alphabet (a = 1, b = 2, and so

on)).

● '@' – This character denotes the black hole, there will only be one of these per map, and the black hole itself is always

impassable. The black hole works as follows:

o At the beginning of the test, the radius of effect of the black hole is 1.

o Every 3 seconds, the radius will expand by 1.

o The radius of the black hole extends in all directions, including diagonals (up, down, left, right, up-right, up-

left, down-right, down-left).

o If you are in the outside 2 blocks (outer radius) of the black hole’s radius, your movement speed will be cut in

half.

o If you are inside the radius of the black hole, and not in the outside 2 blocks of the radius, you cannot move

(these blocks are impassable.).

You can only move in the 4 cardinal directions (up, down, left, right), and every step takes one second, unless you are in the

radius of the black hole. If the spot you are in comes into the radius as you leave it, you are unaffected. For every portal within

the maze, there will only be one entrance and exit.

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case

will begin with 3 space-separated integers, r and c, denoting the number of rows and columns in the maze. Each of the

following r lines will each contain c character denoting the maze.

Output: If it is possible to reach the exit, output the string "Exit is short for exciting.", followed by a space and

the number of steps it took to reach it. If it is not possible to reach the exit, output "Tell Matthew Mcconaughey I

said hi.".

~ Sample input and output on next page ~

UIL – Computer Science Programming Packet – State - 2024

 4

~ Bart continued ~

Sample input:
2

7 7

$..#.A#

#....##

##....#

@...###

#D....a

###..##

d^...##

4 8

#$##....

J....##B

########

^.j.b..@

Sample output:
Tell Matthew Mcconaughey I said hi.

Exit is short for exciting. 15

UIL – Computer Science Programming Packet – State - 2024

 5

3. Ben

 Program Name: Ben.java Input File: ben.dat

Ben was recently creating his account for a new game that he wanted to play with his friends and went to enter in his username.

After successfully creating his account and joining his friends’ lobby, one of his friends noticed that he spelled his username

incorrectly! Ben had accidentally spelled “pigeon” as “pidgeon” as he thought that “pidgeon” sounded more phonetically correct

than “pigeon.”

Being the good friends that they are, Ben’s friends decided to poke a little fun at him by changing their usernames to other

misspellings of pigeon. More specifically, they wanted to create usernames which contain multiple noncontiguous substrings of

the string “pidgeon”. Help Ben determine just how good of friends he has by calculating the number of unique noncontiguous

substrings there exist of the string “pigeon” in the various different usernames his friends came up with. Given that these

numbers may become decently large, determine this number modulo 109 + 7.

Input: The first line of input will consist of a single integer 𝑛 (1 ≤ 𝑛 ≤ 50) denoting the number of testcases to follow. The

next 𝑛 testcases will consist of a single line which consists of the username (𝑢) for the current testcase. It is guaranteed that u

consists of only the letters ‘p’, ‘i’, ‘d’, ‘g’, ‘e’, ‘o’, and ‘n’, although, not necessarily in that order. Additionally, it should be

noted that the length of the string will fall in the range 1 ≤ |𝑢| ≤ 103.

Output: For each of Ben’s 𝑛 usernames, print out the number of non-contiguous substrings of the username that are equivalent

to the string “pidgeon” modulo 109 + 7.

Sample input:
4

pidgeon

pidgeonpidgeon

pigeon

ppiiddggeeoonnppiiddggeeoonn

Sample output:
1

8

0

1024

UIL – Computer Science Programming Packet – State - 2024

 6

4. Bethany

 Program Name: Bethany.java Input File: bethany.dat

Bethany loves numbers. She is a Number Sense expert. As part of her study, she has memorized the number of factors that each

integer from 1 to 100 has. She has also learned various techniques for quickly determining the number of factors for any number.

She wants to see what is in common for integers that have the same number of factors

Write a program that inputs two numbers, N and F. Print the first N integers which have exactly F factors.

Example: If the inputs were 5 and 4, she would want to see the first 5 integers which all have 4 factors. Those numbers would be

6, 8, 10, 14, and 15.

Input: The first line of data will be an integer T in the range [1,20]. T represents the number of data lines to follow. Each line of

data will contain two integers N and F. N is an integer in the range [2,20] indicating how many outputs should be created for that

data set. F is an integer in the range [2,100]. F represents the factor count for each output for that data set. One space shall

separate N and F.

Output: Each test case will produce 1 line of output containing at least 2, but not more than 20 positive integers. Each line will

print the first N positive integers which have exactly F factors. There will be one space between each number in each line of

outputs.

Sample input:
5

10 2

5 6

8 4

2 9

10 8

Sample output:
2 3 5 7 11 13 17 19 23 29

12 18 20 28 32

6 8 10 14 15 21 22 26

36 100

24 30 40 42 54 56 66 70 78 88

UIL – Computer Science Programming Packet – State - 2024

 7

5. Conrad

 Program Name: Conrad.java Input File: conrad.dat

Conrad is learning about words that have CCPD, a "constant common positive difference."

To have a constant common positive difference, a word must have at least two letters. Then, moving left to right through the

word one should consider each pair of consecutive letters. If each pair of letters has the same positive difference (considering

the position of the letter in the alphabet), that word has a CCPD.

Example #1 - FHJLJH - the positive differences are: 2 (FH), 2 (HJ), 2 (JL), 2 (LJ), and 2 (JH). Each positive difference is 2. So

this string has a CCPD.

Example #2 - ABCDCBBC - the positive differences are: 1 (AB), 1 (BC), 1 (CD), 1 (DC), 1 (CB), 0 (BB) and 1 (BC). The

differences are not all the same. So this string does not have a CCPD.

Input: The first line of data will be an integer T in the range [1,20]. T represents the number of data lines to follow. Each line

of data will contain one string which has a length in the range [2,26]. The string will consist only of uppercase letters.

Output: Each output will either print the original string if it has a constant common positive difference (CCPD), or the message

"BAD!!!" written in all uppercase with three exclamation points if it does not have a CCPD..

Sample input:
5

GAGA

GULP

FOX

ABCDEFGHIJLMNOPQRSTU

DINS

Sample output:
GAGA

BAD!!!

FOX

BAD!!!

DINS

UIL – Computer Science Programming Packet – State - 2024

 8

6. Dilbert

 Program Name: Dilbert.java Input File: dilbert.dat

Dilbert likes to play around with numbers and has developed an interesting process for manipulating positive integers. He wants

to reverse integers and 12345 reversed in decimal form is 54321 which is just too simple. However, the binary form might be

more interesting. The binary form of 12345 is 0011 0000 0011 1001 (separated into 4-bit groups for readability) and the reverse

of the binary form would be 1001 1100 0000 1100 which has a decimal value of 38848, not 54321! But to make it even more

interesting, lets discard leading 0s of the initial binary form before it is reversed. So, the modified binary form now becomes 11

0000 0011 1001 and when reversed produces 10 0111 0000 0011 which has a decimal value of 9987. Hmmm…

Can help Dilbert by writing program to verify his results?

Input: An unknown number of whitespace separated positive integers but no more than 100. Each integer is a single test case

and will consist of a single positive integer that will not exceed the value 9 x 1018.

Output: Each test case will produce 1 line of output containing the decimal equivalent of the reversed binary form followed by

a single space and the reversed full binary form without leading 0s

Sample input:
10 12345 54321 65536 2903185746

17 1 257 2147483647 1073741984 41943185

Sample output:
Test Case: 1: 5 101

Test Case: 2: 9987 10011100000011

Test Case: 3: 35883 1000110000101011

Test Case: 4: 1 1

Test Case: 5: 1251528885 1001010100110001101000010110101

Test Case: 6: 17 10001

Test Case: 7: 1 1

Test Case: 8: 257 100000001

Test Case: 9: 2147483647 1111111111111111111111111111111

Test Case: 10: 41943041 10100000000000000000000001

Test Case: 11: 35913733 10001001000000000000000101

UIL – Computer Science Programming Packet – State - 2024

 9

7. Jason

 Program Name: Jason.java Input File: jason.dat

Jason’s sister was working with 2-dimension arrays for her college math homework. She explained that arrays are called

matrices in math and she was performing matrix multiplication. She explained the following example:

Start with two matrices (2-dimension arrays): matrix A with n rows and m columns and matrix B with m rows and p

columns. The number of columns m in A must equal the number of rows m in B. Their product C = AB is a matrix C with n

rows and p columns. Position (i,j) in the result matrix C is the sum of m products, the elements in row i of A multiplied

by the elements in column j of B.

Matrix A
n × m

3 × 4
Col 1 Col 2 Col 3 Col 4

Matrix B
m × p

4 × 2
Col 1 Col 2

Matrix C
n × p

3 × 2
Col 1 Col 2

Row 1 1 0 -3 2 Row 1 -1 0 Row 1 8 -13

Row 2 2 -3 0 2 Row 2 2 -4 Row 2 -8 8

Row 3 -3 0 2 3 Row 3 -3 3 Row 3 -3 0

 Row 4 0 -2

C(1,1) sums the products of row 1 from A and col 1 from B

= A(1,1) × B(1,1) + A(1,2) × B(2,1) + A(1,3) × B(3,1) + A(1,4) × B(4,1)

= 1 × -1 + 0 × 2 + -3 × -3 + 2 × 0 = 8

C(1,2) sums the products of row 1 from A and col 2 from B

= A(1,1) × B(1,2) + A(1,2) × B(2,2) + A(1,3) × B(3,2) + A(1,4) × B(4,2)

= 1 × 0 + 0 × -4 + -3 × 3 + 2 × -2 = -13

C(2,1) sums the products of row 2 from A and col 1 from B

= A(2,1) × B(1,1) + A(2,2) × B(2,1) + A(2,3) × B(3,1) + A(2,4) × B(4,1)

= 2 × -1 + -3 × 2 + 0 × -3 + 2 × 0 = -8

C(2,2) sums the products of row 2 from A and col 2 from B

= A(2,1) × B(1,2) + A(2,2) × B(2,2) + A(2,3) × B(3,2) + A(2,4) × B(4,2)

= 2 × 0 + -3 × -4 + 0 × 3 + 2 × -2 = 8

C(3,1) sums the products of row 3 from A and col 1 from B

= A(3,1) × B(1,1) + A(3,2) × B(2,1) + A(3,3) × B(3,1) + A(3,4) × B(4,1)

= -3 × -1 + 0 × 2 + 2 × -3 + 3 × 0 = -3

C(3,2) sums the products of row 3 from A and col 2 from B

= A(3,1) × B(1,2) + A(3,2) × B(2,2) + A(3,3) × B(3,2) + A(3,4) × B(4,2)

= -3 × 0 + 0 × -4 + 2 × 3 + 3 × -2 = 0

Jason realizes that is a lot of work for even a small example and decides to write a program to help his sister check her

calculations.

Input: First line of data file contains the number of data sets which is in range [2,10]. Each data set starts with a line of four

whitespace-separated integers: the number of rows r1 and columns c1 in the first matrix and the number of rows r2 and

columns c2 in the second matrix. That line will be followed by r1 lines, each contains values for c1 columns, and then r2 lines,

each contains values for c2 columns. Whitespace separates all values with matrix content values in range [-100,100]. Minimum

matrix size is 2 × 2 and maximum matrix size is 10 × 10.

Output: For each data set, display a line that starts with the data set number followed by a colon. If matrix sizes are compatible

(c1 = r2) display, after the colon, the number of rows and columns of the result matrix separated by a comma. If not compatible,

display the message “MATRIX SIZES NOT COMPATIBLE” after the colon with no extra spacing. When they are compatible,

display one line for each row of the result matrix with the column values displayed right aligned in fields exactly 7 characters

wide and no additional spacing. Generated values are guaranteed to fit in columns. After each data set, output a line containing

exactly 15 carats “^^^^^^^^^^^^^^^”.

~ Input and Output on next page… ~

~ Jason continued… ~

UIL – Computer Science Programming Packet – State - 2024

 10

Sample input: (data aligned for readability)
4

3 4 4 2

 1 7 -3 2

 2 -3 5 2

 -3 0 2 3

 -1 9

 2 -4

 -3 3

 6 -2

3 5 4 3

 7 6 -7 3 -1

 -4 8 -1 8 -3

 2 -1 -6 -6 1

 4 7 -9

 6 -9 -1

 -1 4 -5

 9 -9 -3

5 3 3 4

 -2 6 0

 -1 -1 5

 6 -1 -8

 -3 7 0

 5 -5 0

 1 -3 -6 9

 -9 3 10 -8

 9 -6 -8 5

4 6 5 4

 2 -1 -6 -6 1 -6

 7 6 -7 3 -1 4

 4 5 1 6 -7 4

 -4 8 -1 8 -3 -8

 -1 4 -5 6

 6 -9 -1 -4

 9 -9 -3 0

 8 6 -3 5

 4 7 -9 -3

Sample output:
1:3x2

 34 -32

 -11 41

 15 -27

^^^^^^^^^^^^^^^

2:MATRIX SIZES NOT COMPATIBLE

^^^^^^^^^^^^^^^

3:5x4

 -56 24 72 -66

 53 -30 -44 24

 -57 27 18 22

 -66 30 88 -83

 50 -30 -80 85

^^^^^^^^^^^^^^^

4:MATRIX SIZES NOT COMPATIBLE

^^^^^^^^^^^^^^^

UIL – Computer Science Programming Packet – State - 2024

11

8. Lina

 Program Name: Lina.java Input File: lina.dat

You and Lina have a Binary Search Tree project due tomorrow, but you haven’t started! Quick, write a program to take in a list

of strings, make a binary search tree based on that list, and find the diameter, width, height, and number of leaves in the tree.

The definitions of these terms are as follows:

● Diameter – The length (number of connections) of the longest path between 2 nodes in the binary search tree.

● Width – The number of nodes in the largest layer of the tree (which level has the most nodes, how many nodes).

● Height – The length (number of connections) of the path from the root of the tree to the lowest node.

● Number of leaves – Leaves are nodes in the tree with no children, find out how many there are.
Duplicate values should be treated as less than and sent to the left subtree.

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case

will consist of a list of space separated strings of unknown length to be put into the binary search tree. Put the strings into the

tree in the order they are given. These strings will not contain any punctuation.

Output: First output the string "TEST CASE #n:", where n is replaced with the number of the test case, starting at 1. Then,

on the following line, output the string "DIAMETER OF THE TREE: ", followed by the integer diameter of the created

binary tree. Then, on the following line, output the string "WIDTH OF THE TREE: ", followed by the integer width of the

created binary tree. Then, on the following line, output the string "HEIGHT OF THE TREE: ", followed by the integer

height of the created binary tree. Then, on the following line, output the string "NUMBER OF LEAVES IN THE TREE: ",

followed by the integer number of leaves in the created binary tree.

Sample input:
3

Hello Its Me

I Was Wondering If After All These Years Youd Like To Meet

Somebody Once Told Me The World Was Macaroni

Sample output:
TEST CASE #1:

DIAMETER OF THE TREE: 2

WIDTH OF THE TREE: 1

HEIGHT OF THE TREE: 2

NUMBER OF LEAVES IN THE TREE: 1

TEST CASE #2:

DIAMETER OF THE TREE: 7

WIDTH OF THE TREE: 3

HEIGHT OF THE TREE: 5

NUMBER OF LEAVES IN THE TREE: 4

TEST CASE #3:

DIAMETER OF THE TREE: 6

WIDTH OF THE TREE: 3

HEIGHT OF THE TREE: 3

NUMBER OF LEAVES IN THE TREE: 3

UIL – Computer Science Programming Packet – State - 2024

12

9. Max

 Program Name: Max.java Input File: max.dat

Max is working on planning a Game Night for him and his friends and has worked out all of the details for the entire night

except for one thing: the games! Max, in an attempt to ensure that his friends all have the best time possible during their time

together, has already sent out a survey to his friends and received data on which games his friends enjoy the most, and has

averaged the score for each game. Max is interested in selecting a set of games which will maximize the enjoyment experienced

by his different friends. However, seeing how no one in the groups enjoys only playing a portion of a game, each game selected

for the night must be completed in their entirety. However, the group is able to play any given game as many times as they

would like, so long as each time they play it, they have enough time to play it to its entirety. Help Max in determining which

games he should select for the night given a total amount of time available for the night, as well as a list of games which each

have a perceived enjoyment and required playing time.

Input: The first line of input will consist of a single integer 𝑛 (1 ≤ 𝑛 ≤ 50) denoting the number of testcases to follow. The

next 𝑛 testcases will consist of three lines. The first line will consist of two space-separated integers. The first of these integers

is 𝑚 (1 ≤ 𝑚 ≤ 100), denoting the number of games that are to follow, labeled game 1 through game 𝑚. The second of these

integers is 𝑇 (0 ≤ 𝑇 ≤ 1440), denoting the total amount of time that the Game Night will run for. The next line will consist of a

string of 𝑚 space-separated integers denoting the duration (1 ≤ 𝑡𝑖 ≤ 500) of the 𝑚 games. The next line will consist of a single

of 𝑚 space-separated floating-point values (expressed to two decimal places) denoting the perceived enjoyment value (0 ≤ 𝑣𝑖 ≤
10) of the 𝑚 games. If a duration is the 𝑖th element in the space-separated list of integers, then it has a perceived enjoyment

value equal to the 𝑖th element in the space-separated list of floating-point values.

Output: For each of Max’s 𝑛 requests, on its own line, print the maximum total average perceived happiness obtainable during

the Game Night. If this total is equal to 0, then instead print out the string “Should have picked better games...”.

Floating point numbers should be expressed to two decimal places of precision.

Sample input:
3

5 300

60 200 15 5 33

6.43 9.31 3.41 2.36 6.54

6 90

200 120 105 115 300 91

7.82 4.50 3.94 5.86 10.00 9.99

2 101

100 1

9.99 0.01

Sample output:
141.60

Should have picked better games...

10.00

UIL – Computer Science Programming Packet – State - 2024

13

10. Nicholas

 Program Name: Nicholas.java Input File: nicholas.dat

Nicholas is a highly involved student when it comes to his extracurriculars – so much so that he has accidentally overcommitted

himself! Looking to remedy this issue, Nicholas is interested in selecting a subset of the current activities that he is involved in,

such that this new subset maximizes his happiness while avoiding the issue of overcommitting himself. However, wanting to be

able to devote as much attention as possible to those events, he wishes to those events for their entire duration and is not allowed

to leave mid-way through an event.

Because of the sheer quantity of events that he is involved in, as well as the difficult decisions that such an issue might lead to,

Nicholas wishes to automate this process of choosing which events to continue participating in. Help Nicholas determine which

subset of events that he is currently involved in, he should continue to participate in. The figure below is what such a selection

of events would look like, which maximizes the value that Nicholas can obtain from the events described in the figure above,

with the selected events being shaded darker than the unselected ones.

Assume that Nicholas has super-human speed and can travel from one event to another in an instant.

UIL – Computer Science Programming Packet – State - 2024

14

~ Nicholas continued… ~

Input: The first line of input will consist of a single integer 𝑛 (1 ≤ 𝑛 ≤ 10) denoting the number of testcases to follow. The

next 𝑛 testcases will consist of two lines. The first line will consist of a single integer, 𝑚, denoting the number of events that are

to follow. The next line will consist of a single string denoting the list of 𝑚 start times (𝑠𝑖), finish times (𝑓𝑖), and values (𝑣𝑖) that

a particular event (𝑒𝑖) is composed of. Unique events will be separated by a single comma (the string “,”), with the start time,

finish time, and value of a particular event each being separated by a single space (the string “ ”). While not explicitly denoted

in the input, events are numbered 1 through 𝑚, with 1 being assigned to the first event that appears in the input, 2 being assigned

to the second event, and 𝑚 being assigned to the 𝑙𝑎𝑠𝑡 event. It is guaranteed that 𝑠𝑖 , 𝑓𝑖, and 𝑣𝑖 are all integers, as well as 0 ≤
𝑠𝑖 < 𝑓𝑖 ≤ 105, and

1 ≤ 𝑣𝑖 ≤ 104. Lastly, it should be noted that 1 ≤ 𝑚 ≤ 200.

Output: For each of Nicholas’ 𝑛 requests, on its own line, print the list of events that he should attend which maximize the

happiness that attending those events will bring him. This list should be printed as a single line of space-separated integers

which represent the event numbers of the events that Nicholas should attend sorted by start time. It is guaranteed that there is a

single optimal solution.

Sample input:
3

8

1 4 20,3 5 15,0 6 5,4 8 12,3 8 16,5 9 9,6 10 18,8 11 10

9

26 57 29,0 76 31,30 79 39,36 41 9,13 23 34,17 54 71,35 66 5,45 92 46,35 72 8

2

7 56 90,79 100 81

Sample output:
1 4 8

5 4 8

1 2

UIL – Computer Science Programming Packet – State - 2024

15

11. Rufus

 Program Name: Rufus.java Input File: rufus.dat

You are the new TA for professor Rufus, and she needs you to grade some of her spelling quizzes. For each quiz, you need to

find the average score. You will grade by the following criteria:

• Each quiz score will be calculated by finding the least number of “edits” it takes to turn the student’s answer into the

correct answer. The types of “edits” are as follows:

o Insert – Insert a new character into the student’s answer.

o Delete – Delete a character from the student’s answer.

o Replace – Replace a character in the student’s answer with another character.

• The score for each quiz will be equal to (the length of the correct answer) – (the number of “edits” to turn the student’s

answer into the correct answer).

• There can be negative scores.

• Ignore case when calculating scores.

Input: The input will begin with two integers, s, q (0 < s,q <= 1000), denoting the number of students who took all of

the quizzes, and the number of quizzes to be graded, respectively. There will be q cases, and each case will begin with a word,

on its own line, denoting the correct answer for that quiz. The following s lines will each contain a student’s answer to be

graded.

Output: Output the average score for each quiz, the average score should then be printed in format: "[Correct Answer]

Quiz Average: [Average Score]", where [Correct Answer] is replaced with the given correct answer, and

[Average Score] is replaced with the average score on the quiz, rounded to 2 decimal places.

Sample input:
3 2

Business

Bizness

Busyness

Bussness

Economics

Ecanomix

Ecenahmecs

Economics

Sample output:
Business Quiz Average: 6.33

Economics Quiz Average: 6.67

UIL – Computer Science Programming Packet – State - 2024

16

12. Victoria

 Program Name: Victoria.java Input File: victoria.dat

Victoria sometimes gets frustrated while trying to generate good passwords and decided to dig a little deeper into the topic. She

discovered that many systems now allow or require passphrases instead of passwords. A passphrase is a collection of “words”

separated by spaces and even punctuation marks. The idea is that a phrase of words, even if unrelated, can be remembered more

easily than a 10-15 character password of seemingly random characters but no spaces. Longer has always been better when it

comes to passwords but computing power has advanced to a point that makes passwords shorter than 10 characters crack-able

and passwords longer than 10 characters can be a challenge to remember. Passphrases are typically longer and the addition of

spaces and use of all printable characters increases complexity for cracking which makes them stronger.

As with passwords, Victoria suspects that a scoring algorithm might help distinguish between just acceptable passphrases and

exceptional passphrases. Here are the rules and scoring algorithm she has proposed and your challenge is to implement and test

it.

Rules:

1. A single “word” is a sequence of 1 or more non-blank printable characters and may contain letters, digits, punctuation

marks, and all other printable characters. A word could consist of all letters, all digits, all special characters, or any mix

of those categories of characters. Uppercase and lowercase letters are different so “UIL” and “Uil” would be distinct

words as would be “2024” and “2024!”.

2. Passphrases must contain 4 or more distinct words separated by spaces, each word containing at least 4 non-blank

characters. “UIL” would not count as a word but “2024” would count.

3. Words with less than 4 non-blank characters, like “UIL”, are not included in minimum word count but they do contribute

towards overall length and are eligible words for other scoring.

4. Minimum length of an acceptable passphrase is 20 characters including spaces.

Scoring:

1. Acceptable passphrases, those that satisfy ALL of the above rules, receive an initial score of 100 points while others

receive a final score of 0 and are not considered for bonuses and penalties.

2. Each additional word, including ones with length less than 4 characters, beyond the required minimum of 4 words results

in a 10-point bonus.

3. Each word that contains a special character (non-letter and non-digit), even if it is a single character or a leading or

trailing punctuation mark, results in a 5-point bonus but multiple special characters within the same word do not add more

points.

4. Each word that contains a digit results in a 5-point bonus but multiple digits within the same word do not add more points.

5. Each word that contains letters that are only uppercase results in a 10-point bonus but only if less than half of the total

words contain letters that are only uppercase. The word may also contain non-letters.

6. A passphrase that contains more than one letter and uses only lowercase letters or only uppercase letters, even with digits

and special characters results in a 10-point penalty.

7. Each complete word that matches another complete word results in a 20-point penalty for the matching pair. Test data

will not contain a set of 3 or more words that all match but there can be multiple distinct pairs of matching words.

8. Each complete word with a length greater than 2 characters that matches a prefix or suffix or both of another word results

in 10-point penalties for each prefix or suffix match. The word itself is not penalized.

Rating Scale:

Score Range Rating

150 and above Excellent

125 – 149 Strong

100 – 124 Adequate

75 – 99 Weak

50 – 74 Poor

Below 50 Unacceptable

UIL – Computer Science Programming Packet – State - 2024

17

Examples:

● “Start with a simple passphrase” has 4 words of at least 4 characters and 5 total words. It gets a 10-point

word bonus for the fifth word with a total score of 110 and would be rated “Adequate”

● “Add some extra digits & special chars!” has 5 words of at least 4 characters and 7 total words. It gets a

30-point word bonus for the extra 4-char word along with “Add” and “&”. It also gets a 10-point special-char bonus

for “&” and “!” for a total score of 140 and would be rated “Strong”

● “Computer Science UIL 2024!!” has only 3 words of at least 4 characters and is not eligible for any bonuses for

a total score of 0 and would be rated “Unacceptable”

● “ing is a prefix of the word ingot and a suffix of confusing and challenging” has 6 words

of at least 4 characters and 15 total words. It gets a 110-point word bonus for extra words. It also gets a 10-point

penalty for not having different cases of letters. Words “a”, “of”, and “and” are matching pairs and receive a 60-

point penalty. “ing” is a prefix of “ingot” and gets a 10-point penalty. It is also a suffix of “confusing” and

“challenging” and gets another 20-point penalty. The resulting total score is 110 and would be rated “Adequate”

Input: An unknown number of lines with a single passphrase on each line. The length of individual passphrases will not exceed

80 characters. There will be no more than 50 lines in the judge’s data file. Lines may contain any of the common ASCII

printable characters between and including the space and the tilde. The data will not contain illegal characters.

Output: For each passphrase, output a single line containing its algorithm score followed by a colon (:) and the corresponding

passphrase rating.

Sample input:
Start with a simple passphrase

Add some extra digits & special chars!

Computer Science UIL 2024!!

ing is a prefix of the word ingot and a suffix of confusing and challenging

AAAAA 12345 *&^%$ zyxwv q8Z@~ !Mp76

Sample output:
110:Adequate

140:Strong

0:Unacceptable

110:Adequate

160:Excellent

UIL – Computer Science Judge’s Packet – State - 2024

 1

UIL Computer Science Competition

State 2024

JUDGES PACKET - CONFIDENTIAL

I. Instructions

1. The attached printouts of the judge test data are provided for the reference of the

contest director and programming judges. Additional copies may be made if
needed for this purpose.

2. This packet must remain CONFIDENTIAL. Additional copies may be made and

returned to schools when other confidential contest material is returned.

II. Table of Contents

Number Name

Problem 1 Ace

Problem 2 Bart

Problem 3 Ben

Problem 4 Bethany

Problem 5 Conrad

Problem 6 Dilbert

Problem 7 Jason

Problem 8 Lina

Problem 9 Max

Problem 10 Nicholas

Problem 11 Rufus

Problem 12 Victoria

UIL – Computer Science Judge’s Packet – State - 2024

 2

Problem #1
60 Points

1. Ace

 Program Name: Ace.java Input File: None

Test Input File: None

Test Output To Screen:
UIL CompSci State Champion Teams

25 Years Ago - 1999

5A - Houston Langham Creek HS

4A - Fort Worth Dunbar HS

3A - Devine HS

2A - Stockdale HS

1A - Muenster HS

UIL – Computer Science Judge’s Packet – State - 2024

 3

Problem #2

60 Points

2. Bart

 Program Name: Bart.java Input File: bart.dat

Test Input File:
13

7 7

$..#.A#

#....##

##....#

@...###

#D....a

###..##

d^...##

4 8

#$##....

J....##B

########

^.j.b..@

3 3

$..

.@.

..^

3 3

$..

...

@.^

8 8

@#A.B.C#

##.D.E.#

#..###.$

#..be#..

#..cd#..

#..#a###

#..#####

#......^

8 8

##A.B.C#

#@.D.E.#

#..###.$

#..be#..

#..cd#..

#..#a###

#..#####

#......^

1 12

$.CBA#@cba.^

1 12

$.CBA@#cba.^

~ Input continues next col ~

~ Input continued ~
1 12

$..CBA#@cba^

1 12

$KJI@kji...^

13 10

$..##.#A.B

a.##..C..#

#..D#...b#

E..#..e#@#

##...###.d

F.....G.cH

#####..###

I#J....#K.

f...h#...g

..##...###

#....##j##

i..#.....k

##.^.#####

13 10

$..##.#A.B

a.##..C..#

#..D#...b#

E..#..e###

##...###.d

F.....G.cH

##@##..###

I#J....#K.

f...h#...g

..##...###

#....##j##

i..#.....k

##.^.#####

13 10

$..##.#a.B

A.##..C..#

#..D#...b#

E..#..e###

@#...###.d

F.....G.cH

#####..###

I#J....#K.

f...h#...g

..##...###

#....##j##

i..#.....k

##.^.#####

~ Output on next page ~

UIL – Computer Science Judge’s Packet – State - 2024

4

~ Bart continued ~

Test Output To Screen:
Tell Matthew Mcconaughey I said hi.

Exit is short for exciting. 15

Tell Matthew Mcconaughey I said hi.

Exit is short for exciting. 5

Exit is short for exciting. 15

Tell Matthew Mcconaughey I said hi.

Exit is short for exciting. 7

Exit is short for exciting. 8

Exit is short for exciting. 8

Tell Matthew Mcconaughey I said hi.

Exit is short for exciting. 24

Tell Matthew Mcconaughey I said hi.

Exit is short for exciting. 24

UIL – Computer Science Judge’s Packet – State - 2024

5

Problem #3
60 Points

3. Ben

 Program Name: Ben.java Input File: ben.dat

Test Input File (indented lines are continuation of previous line):
50

iieegggeeiggppiiiiiinnnnnneeeeeiiiiiiiiiiiiiieeeppppoooooooddddeeedoooodddddddnniippppppp

ddpppppppggggiiiooooooddddnnndddnggggggggeeeeeeeppppnnnnnnpgggggggggddnnndddddgggiiii

iiiiiedddddeeeeeeennnnniiiiigggggnnnnnnndiioiiiiennnnnpppppppggggeeeiinnniiiiiiinnnee

enpppppdddddiiiiiigggggggoooooddddddnnnnngggggnnnnnggggggnnnnndddgggggggiiiiiiggggooo

onnpppppppiiioooooogggggeegggggggoooooonnnneeegggggggooppppppppiigggggggnniiidggggggn

nnnnnnnnngiinnnnnndddddddddeeeiiiddpppppppoooooooopppdddooo

ooooooooonniiiiiiipppppdddpppppppnnnnnngnnneeeeeeedddddoooniiiiiiiooooiiiiiiiiiinnnnnnooo

oooooooooodddonnnnnpppppppeeeeeeeoideeenpnnndddddeeedggggggddddiiiiiddeeeeeeeppeeeeee

nnnnnnnnnnoooooooeogggggggdddddddgpppdddddddddddpppppppiiiiipppppppiiiiiieeeiiiiiiiop

pppppippiiiidddddiiiiiioooooggnnnnpppppppeeeeeeegggeeeeiggggeeeeeeeioooooooeeeggggnnn

gddddddddeeiiiiiiieeeeeennnnnnnnngggggggoooooooiiiiiigggoooooogggggdddeeeeegggggggdoo

oonnnnnnooodddgggggdddddddiiiiiiieeeegggggeeeeiiiiieeeedgggggnnngggeeeeeiiiiiiddddddp

ppppepppppddddddddeeeeeeeeennnnnnooooooopdddddddedddddoooonnnnooooooeoooooeeeeeeggnnn

nnnneeeeoooonnnniiieddddddddnneeeeee

gggpppooooooogggggiiiiiippppppeeeeeepppiiiieeeooooiiiiiiiiiiiiiiieeeddddddddiiiiiiggppppp

peeeeeeeeeennnnnneeeeppppppnddddddooooooonnoooooooggggepppppeeeeoooooeeeeeooooooooooo

oddggoooooogggggggggddddddoooooooiiiiiiinnnniiiiiiiddddddddddddgggggggggiiiiiiieeeedd

ddddddddeeeeeeeedddddpppppnnnnnnppppppiiiiiieeeepppgggggggggggggooogggggddddnnnnnnnnn

nnnneiiiiiiiiinppp

nnnnggggooooooogiiiiddddggggggnnnnniiiigggggnneeeoiinoooooooiiiiiiipddddeiiiiipnnnnnnnggg

ggoooooidddddgggeeeeeeeppggoooooggggggggdddddiiiiiiidddnnnddddeeeeooonnnnnnnggggggggp

pppppoggdddddiiiidddddddddiiinnddeeeeooooppppppggggggeeeeppnnnnnnnoiiiiiigggggnnnneee

ggggggpppppppppppppiiiiiiioooooooeeeeeooondddddiiippppeeddddddddddooogggggggnnnnnnonn

nnnnnoooooeiiiiinniiiiinneeeennnnnngggggpppeeeeeeennnnnnnggggggoooooogggiiiiioooooooo

odddddddiiiiggpppoooooooppppppigggggggddddoooooooiiiiiieeeeepeeeeeeppppppggggggnnnnpp

pppppppppppigggggggggggdggnnnnnnnnnnnddddddpppppeeooodddddddddddiiigggggniiiiiiiiiiii

idddddddendddddddeeeeeeeeeeoooooonppggggggeeeeeeeegggggpppppppggggggdddddeeeeeeoooeep

pppggggggidddddgggpppppppddddggggeeeeeddeeeeeeennnoooooopppiiinnnnneeggggggooooo

ooooopppppppnnnoooooiiiiiiigggggpeeeedddppppeeennnnnnooooooodddddddiiiiiiiiiiggggiiiiiigg

ggppppppgggggiiiipppggeeeeeooooooeiiiiiooooooogggggggppppppdddnnoooooooonnnnnnnnnnnnn

dddddddnpppppppppoooooonnneeeeeeepppppppddddiiiiieeigggggggdddddddnnnnpppppppeeeeniii

iiippddiiiiiiippipnnnnnddddddddddddddnnnnnnddgggggggggggeeeeeeeeeeeeggggggggggeeeeeee

oooooddgggggnnnnnnnoonnnnnnndddddddiiidddddppppppiiiiiieeepppppoiippepppppppiiiiiieee

eeoooeeeeeeeppppppggggggggnnnnnnnpppppgggggggppppippppppeeeeeeeeiioooooooeeeepppppddd

pppooonnnniiiooooooeeeeeeeiiiiippppppdddddnnppppppnnngggggggeeeeeennnnnn

iiiiiiiiieeeeeeoooooonnnnnngggggggggggddeeeeeeiiiiieeedddnnnnnnggggoonnnnnnnnnddddddooggg

pnggnnnggggggiiiiiiioooiiiiigggggggooooiiggggpnnneeennnnnniiiiiiinnddddiiiiooiiippppo

oooidddddddddoggggdddddddddnieeeeeeennnnniiiiiinnnngggggggddddddpppppppddddddnnnnnnpo

oeeeeeeeiiiinnnniiiioooeeeppppddddddeepppppiiiiiiigggggnnnnndddddnnnniiiiiiieeeeeiigg

pppppppdddddoooooopppppppddggggggpnnnnniieeeeeeooooooodnnniiiiiiiggggggeeennnnggeeeee

eddddnnnnnnggggggiiiiiiiooiiiiiiinnnnnngggggggeeeeeggggggngggepppppppeeeeppppppddddgg

oooggggeeeeeeegggggggpiiiiddddddggggeeeeeedddddddnnnnnnndddoooooooiiiioopppddgggnnndd

deeeeeeeiiiiidgdooooooepppppooooooiiiiiiddddppppppiiiiieeeeeeeggggggeeennnnnnneeeodii

iiiiidpddddddnnnnnnnnndddeeeeeeeiiiiiiinnennnnnnniiiiiodddonnngggggggnnnnnnonppggggdd

ddennnnnnnnnnnnneeeeeeeoonnnnnieeeeeeeeeeeeeeggggpoooooppppiiinnnniinnnnnnniiiiiiieee

eeeeeeeeeppnndddddddiiiiiioggggggddddddpppooiiiiiiggggggggeeeeennnnggggooggggggggnnnn

ngggggiieeeeeppppgiiiiigggggggooooooooooooo

~ Input file contains 51 lines of data, some lines extremely long – see ben.dat file for complete input ~

~ Output on next page ~

UIL – Computer Science Judge’s Packet – State - 2024

6

~ Ben continued ~

Test Output To Screen:
779320377

565533199

335534016

789931364

207668418

551009422

720607514

850294760

0

0

1630080

0

0

9072

19051200

768623754

810883030

965705837

180430245

400646341

38454136

0

222014579

19179207

910953277

79608138

686774672

310190413

868804412

752722524

368418618

498880570

0

495327522

905195528

296052440

207900

436561971

146428506

369882510

0

4630171

9200736

498715260

465884030

566852933

122285577

102144

29005806

48522726

UIL – Computer Science Judge’s Packet – State - 2024

7

Problem #4
60 Points

4. Bethany

 Program Name: Bethany.java Input File: bethany.dat

Test Input File:
10

10 2

5 6

8 4

2 9

10 8

3 12

5 3

2 20

3 7

2 100

Test Output To Screen:
2 3 5 7 11 13 17 19 23 29

12 18 20 28 32

6 8 10 14 15 21 22 26

36 100

24 30 40 42 54 56 66 70 78 88

60 72 84

4 9 25 49 121

240 336

64 729 15625

45360 71280

UIL – Computer Science Judge’s Packet – State - 2024

8

Problem #5
60 Points

5. Conrad

 Program Name: Conrad.java Input File: conrad.dat

Test Input File:
10

GAGA

GULP

FOX

ABCDEFGHIJLMNOPQRSTU

DINS

EYE

UT

XXXXX

MUFFIN

NUN

Test Output To Screen:
GAGA

BAD!!!

FOX

BAD!!!

DINS

EYE

UT

XXXXX

BAD!!!

NUN

UIL – Computer Science Judge’s Packet – State - 2024

9

Problem #6
60 Points

6. Dilbert

 Program Name: Dilbert.java Input File: dilbert.dat

Test Input File:
10 12345 54321 65536 2903185746

17 1 257 2147483647 1073741984 41943185

1717986918 2686456320 2694840320 2863311530 5787213827046133840

1085102592571150095 6510615555426900570 8070450532247928831

4294967296

Test Output To Screen: (indented lines are continuation of previous line)
Test Case: 1: 5 101

Test Case: 2: 9987 10011100000011

Test Case: 3: 35883 1000110000101011

Test Case: 4: 1 1

Test Case: 5: 1251528885 1001010100110001101000010110101

Test Case: 6: 17 10001

Test Case: 7: 1 1

Test Case: 8: 257 100000001

Test Case: 9: 2147483647 1111111111111111111111111111111

Test Case: 10: 41943041 10100000000000000000000001

Test Case: 11: 35913733 10001001000000000000000101

Test Case: 12: 858993459 110011001100110011001100110011

Test Case: 13: 4719621 10010000000010000000101

Test Case: 14: 1285 10100000101

Test Case: 15: 1431655765 1010101010101010101010101010101

Test Case: 16: 361700864190383365

10100000101000001010000010100000101000001010000010100000101

Test Case: 17: 1085102592571150095

111100001111000011110000111100001111000011110000111100001111

Test Case: 18: 3255307777713450285

10110100101101001011010010110100101101001011010010110100101101

Test Case: 19: 9223372036854775803

11011

Test Case: 20: 1 1

UIL – Computer Science Judge’s Packet – State - 2024

10

Problem #7
60 Points

7. Jason

 Program Name: Jason.java Input File: jason.dat

Test Input File: ~ data aligned for readability ~
10

3 4 4 2 ~ first line each data set bold ~

 1 7 -3 2

 2 -3 5 2

 -3 0 2 3

 -1 9

 2 -4

 -3 3

 6 -2

3 5 4 3

 7 6 -7 3 -1

 -4 8 -1 8 -3

 2 -1 -6 -6 1

 4 7 -9

 6 -9 -1

 -1 4 -5

 9 -9 -3

5 3 3 4

 -2 6 0

 -1 -1 5

 6 -1 -8

 -3 7 0

 5 -5 0

 1 -3 -6 9

 -9 3 10 -8

 9 -6 -8 5

4 6 5 4

 2 -1 -6 -6 1 -6

 7 6 -7 3 -1 4

 4 5 1 6 -7 4

 -4 8 -1 8 -3 -8

 -1 4 -5 6

 6 -9 -1 -4

 9 -9 -3 0

 8 6 -3 5

 4 7 -9 -3

~ Input continues next column ~

~ Input continued ~
10 5 5 7

 2 2 0 -3 -2

 0 -5 -1 6 -2

 -3 0 -7 -6 0

 -6 -5 0 -2 -7

 -1 -3 -2 0 2

 4 0 3 -6 -2

 0 -4 2 -4 2

 8 0 -7 -4 -7

 0 8 3 -8 0

 -6 0 -4 -7 -7

 1 7 3 5 -2 2 0

 -6 -3 -6 -5 0 -2 2

 0 -5 4 6 1 -1 3

 3 0 2 -4 0 -3 0

 -1 3 5 0 5 0 -4

3 2 3 9

 -8 -7

 -7 7

 5 1

 4 3 5 5 -9 6 -5 7 2

 1 0 -5 0 -9 -1 -2 -5 -7

 7 -2 7 -3 -4 -5 -7 7 -8

5 2 2 7

 1 -5

 0 -8

 2 7

 -9 0

 -6 -1

 -9 -2 -8 -7 2 0 0

 -2 1 -1 2 -2 -6 8

~ Input continues next page ~

UIL – Computer Science Judge’s Packet – State - 2024

11

~ Jason Input continued ~
10 10 10 10

 -61 71 9 54 16 -38 -100 -36 -97 -46

 -63 -35 -55 -33 -71 100 -16 -67 88 -77

 5 50 -100 -6 -75 -85 31 2 2 79

 -95 86 40 -13 -47 88 -72 -23 47 -78

 98 21 -9 -51 1 20 -44 48 -100 25

 -46 56 -95 17 44 -49 -86 3 -19 -15

 13 -37 8 -94 34 -63 -99 -3 -80 -32

 66 70 73 90 -60 42 -84 46 -48 39

 32 -17 -89 35 -51 -35 -19 23 -44 -29

 -31 89 -66 27 -16 16 -73 58 -65 -88

 -50 71 99 90 32 97 25 -41 -80 -97

 84 74 17 70 -69 92 68 76 46 27

 -97 -29 46 89 -76 -79 -78 3 -17 -55

 11 -23 61 51 -45 38 31 67 81 17

 89 -16 -61 96 8 13 -30 82 -60 79

 -17 -70 -6 -40 -58 -40 71 65 -29 57

 28 -76 -29 -29 8 -72 -78 -45 51 5

 -37 73 16 -51 -65 -63 -36 -82 -34 5

 18 -55 74 10 -86 31 -22 -94 19 -17

 -37 -49 -6 -47 65 -24 67 97 -40 95

5 9 9 8

 -15 -51 -20 -86 22 -9 4 -84 -49

 -43 82 -60 47 79 -67 47 18 8

 51 60 28 87 -20 44 94 12 -72

 -7 -82 85 10 -28 -66 -19 -3 62

 -20 -92 46 64 -10 9 -73 40 -13

 86 37 11 -33 -52 -25 59 80

 -35 3 76 71 -38 -35 -7 17

 56 77 -77 -89 -52 74 -17 77

 -96 -52 21 -72 -12 41 2 -79

 75 -2 -97 -62 -91 -86 72 48

 -6 -59 57 -52 -40 56 72 5

 36 -87 8 -62 77 -97 -49 87

 38 -34 -76 -30 5 -81 33 -51

 -9 21 -82 51 -65 75 -67 73

2 2 2 2

 29 87

 -84 -96

 -88 82

 66 -22

~ Test Output next page ~

UIL – Computer Science Judge’s Packet – State - 2024

12

~ Jason continued ~

Test Output To Screen:
1:3x2

 34 -32

 -11 41

 15 -27

^^^^^^^^^^^^^^^

2:MATRIX SIZES NOT COMPATIBLE

^^^^^^^^^^^^^^^

3:5x4

 -56 24 72 -66

 53 -30 -44 24

 -57 27 18 22

 -66 30 88 -83

 50 -30 -80 85

^^^^^^^^^^^^^^^

4:MATRIX SIZES NOT COMPATIBLE

^^^^^^^^^^^^^^^

5:10x7

 -17 2 -22 12 -14 9 12

 50 14 28 -5 -11 -7 -5

 -21 14 -49 -33 -1 19 -21

 25 -48 -27 3 -23 4 18

 15 18 17 -2 10 6 -20

 -12 7 2 62 -15 23 17

 10 8 34 48 12 18 -10

 3 70 -47 14 -58 35 7

 -72 -39 -52 10 3 5 25

 -20 -43 -83 -26 -27 13 16

^^^^^^^^^^^^^^^

6:MATRIX SIZES NOT COMPATIBLE

^^^^^^^^^^^^^^^

7:5x7

 1 -7 -3 -17 12 30 -40

 16 -8 8 -16 16 48 -64

 -32 3 -23 0 -10 -42 56

 81 18 72 63 -18 0 0

 56 11 49 40 -10 6 -8

^^^^^^^^^^^^^^^

8:10x10

 9293 14385 -6450 12019 -741 11249 9245 22492 8630 3954

 3627 -15315 -1278 -17134 -8650 -1214 5107 -11302 9266 -1505

 6261 8052 271 -13750 13991 10990 10113 -2866 8470 3129

 4839 -1620 1109 -268 -25102 874 7792 4688 11214 1735

 -8808 19653 847 2837 10267 5868 9968 5385 -18268 -3997

 18849 14503 -8099 1232 4089 17147 11809 11374 3780 10654

 -4388 17254 -9309 4010 14720 2220 -3776 -1809 -15892 -7393

 -15926 14170 19366 12264 -12231 8761 16853 14976 -1949 -5012

 944 13020 2078 -7641 9260 9889 6395 -6691 3654 -6084

 11925 22483 -3302 -588 -8872 12272 12018 5477 6969 1817

^^^^^^^^^^^^^^^

9:5x8

 6728 4190 3480 3723 6221 -2501 891 5253

 -5809 -9147 -1764 4737 356 -20271 -3378 -3167

 -1774 -12955 14984 -17087 4606 -9042 4629 1953

 3008 12527 -18698 -4278 -1380 15193 -11354 5153

 -3863 3405 -10485 -11759 -2650 13978 4506 -14453

^^^^^^^^^^^^^^^

10:2x2

 3190 464

 1056 -4776

^^^^^^^^^^^^^^^

UIL – Computer Science Judge’s Packet – State - 2024

13

Problem #8

60 Points

8. Lina

 Program Name: Lina.java Input File: lina.dat

Test Input File (indented lines are continuation of previous line):
15

Hello Its Me

I Was Wondering If After All These Years Youd Like To Meet

Somebody Once Told Me The World Was Macaroni

K A S D E W Q R G H Y U I O P M N B V C X Z L J F T

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

eij weofi wefnn fsverter pwqeork qmler xcvm poiuy lkjh fds rew bvcx gfds mnbv

lkjh

M N O P Q R S F G H I J K L T U V W X Y Z A B C D E

YUI CVBN RINIM UNVME RIMV UIKMNBG IKMNGTRD ASDFGHJK ZXCVBN QWERTYUI MNBVCXRTYUIK

OKJGRDCVHJI LKJUIOPOIUH JNBVCFRTREDSXCV

Somebody Once Told Me The World Was Macaroni I Aint The Sharpest Tool In The

Shed

E F G H I J K L M N O P Q R A B C D S T U V W X Y Z

L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

A B U V W X Y C N O P Q E F G H I R S T Z D J K L M

qwer wert rt rty tyu tyui yui uio iop asd sdf sdf gdfg hfg hghj kjk ljk zxc xcv

cvb vbn bnm jkl hjk ghj fgh dfg sdf asd qwe wer ert rty tyu yui uio iop

A

B C A

~ Test Output on next page ~~

UIL – Computer Science Judge’s Packet – State - 2024

14

~ Lina continued ~

Test Output To Screen:
TEST CASE #1:

DIAMETER OF THE TREE: 2

WIDTH OF THE TREE: 1

HEIGHT OF THE TREE: 2

NUMBER OF LEAVES IN THE TREE: 1

TEST CASE #2:

DIAMETER OF THE TREE: 7

WIDTH OF THE TREE: 3

HEIGHT OF THE TREE: 5

NUMBER OF LEAVES IN THE TREE: 4

TEST CASE #3:

DIAMETER OF THE TREE: 6

WIDTH OF THE TREE: 3

HEIGHT OF THE TREE: 3

NUMBER OF LEAVES IN THE TREE: 3

TEST CASE #4:

DIAMETER OF THE TREE: 12

WIDTH OF THE TREE: 8

HEIGHT OF THE TREE: 7

NUMBER OF LEAVES IN THE TREE: 11

TEST CASE #5:

DIAMETER OF THE TREE: 25

WIDTH OF THE TREE: 1

HEIGHT OF THE TREE: 25

NUMBER OF LEAVES IN THE TREE: 1

TEST CASE #6:

DIAMETER OF THE TREE: 9

WIDTH OF THE TREE: 2

HEIGHT OF THE TREE: 8

NUMBER OF LEAVES IN THE TREE: 6

TEST CASE #7:

DIAMETER OF THE TREE: 20

WIDTH OF THE TREE: 3

HEIGHT OF THE TREE: 13

NUMBER OF LEAVES IN THE TREE: 3

~ Output continues next column ~

~ Ouput continued ~
TEST CASE #8:

DIAMETER OF THE TREE: 9

WIDTH OF THE TREE: 2

HEIGHT OF THE TREE: 8

NUMBER OF LEAVES IN THE TREE: 5

TEST CASE #9:

DIAMETER OF THE TREE: 9

WIDTH OF THE TREE: 4

HEIGHT OF THE TREE: 5

NUMBER OF LEAVES IN THE TREE: 5

TEST CASE #10:

DIAMETER OF THE TREE: 25

WIDTH OF THE TREE: 2

HEIGHT OF THE TREE: 21

NUMBER OF LEAVES IN THE TREE: 2

TEST CASE #11:

DIAMETER OF THE TREE: 25

WIDTH OF THE TREE: 2

HEIGHT OF THE TREE: 14

NUMBER OF LEAVES IN THE TREE: 2

TEST CASE #12:

DIAMETER OF THE TREE: 13

WIDTH OF THE TREE: 4

HEIGHT OF THE TREE: 13

NUMBER OF LEAVES IN THE TREE: 4

TEST CASE #13:

DIAMETER OF THE TREE: 15

WIDTH OF THE TREE: 7

HEIGHT OF THE TREE: 8

NUMBER OF LEAVES IN THE TREE: 14

TEST CASE #14:

DIAMETER OF THE TREE: 0

WIDTH OF THE TREE: 1

HEIGHT OF THE TREE: 0

NUMBER OF LEAVES IN THE TREE: 1

TEST CASE #15:

DIAMETER OF THE TREE: 2

WIDTH OF THE TREE: 2

HEIGHT OF THE TREE: 1

NUMBER OF LEAVES IN THE TREE: 2

UIL – Computer Science Judge’s Packet – State - 2024

15

Problem #9
60 Points

9. Max

 Program Name: Max.java Input File: max.dat

Test Input File (indented lines are continuation of previous line):
50

16 1272

143 361 153 452 465 106 42 381 478 6 43 253 229 474 186 67

2.43 9.06 6.63 3.75 2.32 5.99 5.11 0.76 5.83 5.75 9.13 1.92 8.78 8.83 7.97 5.11

6 477

895 959 525 756 818 655

8.06 7.68 7.31 3.97 9.93 9.17

87 1217

259 312 331 157 451 130 459 44 172 452 78 221 252 443 97 344 100 460 475 158 202

188 142 365 135 40 150 9 317 109 379 222 391 88 220 314 234 168 320 282 228

98 56 484 25 175 79 301 215 72 340 266 365 52 180 268 79 203 175 27 322 498

31 205 388 79 496 124 5 292 326 167 223 149 21 107 315 484 120 198 86 211 14

494 75 237 329

9.52 8.25 8.46 3.92 2.34 7.09 8.39 1.85 9.90 4.20 1.26 4.15 0.45 2.16 1.01 1.71

2.14 1.81 5.26 2.88 7.61 6.95 8.69 8.53 3.20 5.53 5.24 0.62 1.67 2.16 9.37

0.41 0.18 9.10 9.25 4.68 7.63 5.49 7.34 1.02 7.84 7.03 6.00 5.63 7.78 0.91

8.75 9.58 2.45 3.04 9.79 2.04 0.48 7.50 7.26 1.48 6.97 0.36 8.06 8.26 2.90

2.53 4.61 4.61 2.41 9.01 6.35 0.49 2.39 4.11 1.35 6.29 0.59 4.97 5.91 5.90

1.77 8.13 2.49 5.95 3.12 6.22 8.78 0.01 3.31 4.71 3.32

1 1205

84

3.20

8 231

382 251 60 400 51 112 268 281

7.17 6.57 9.02 0.13 2.66 4.63 1.51 0.07

28 1327

750 575 556 597 745 657 906 867 812 622 607 922 701 787 581 600 572 813 636 985

887 528 855 808 908 986 849 502

3.51 8.20 8.34 7.14 4.25 5.44 8.30 2.34 5.86 6.71 0.94 5.39 2.81 5.38 5.11 2.24

0.23 4.93 4.86 6.75 9.79 0.71 0.37 7.44 2.47 3.47 2.14 7.61

77 941

188 391 457 60 401 179 107 462 40 225 294 222 431 39 412 71 251 462 192 467 375

108 167 91 21 378 458 474 14 410 236 131 83 419 385 262 290 35 482 154 247

356 341 94 462 56 13 171 239 29 228 28 196 154 413 204 97 413 46 357 316 197

204 273 354 275 324 197 496 27 299 142 280 149 156 460 107

0.78 6.57 2.07 0.02 4.53 2.79 4.21 4.64 6.61 8.33 2.65 7.05 6.71 8.44 6.22 9.62

1.50 7.37 7.32 5.04 2.38 3.00 1.16 2.89 3.37 6.43 9.72 8.75 9.19 2.40 2.29

2.97 6.67 8.95 6.53 9.03 4.67 7.42 6.73 3.57 0.38 6.22 8.25 2.80 2.43 4.28

9.98 2.66 3.58 2.74 8.63 2.35 8.37 5.87 1.67 3.41 3.59 4.60 7.95 9.22 1.93

8.72 7.57 2.04 1.60 6.20 5.14 7.34 7.39 0.58 3.00 7.66 0.87 9.99 3.58 0.70

0.21

~ Input file contains 151 lines of data, some lines very long – see max.dat file for complete input ~

~ Output on next page ~

UIL – Computer Science Judge’s Packet – State - 2024

16

~ Max continued ~

Test Output To Screen:
1219.00

Should have picked better games...

759.86

44.80

29.72

16.68

718.56

441.45

199.32

1628.90

17.53

4011.72

37.00

9.80

3703.36

8038.66

418.08

1260.00

9.32

399.00

9.91

74.00

566.15

101.73

211.24

476.61

Should have picked better games...

889.53

1133.64

1253.55

850.00

Should have picked better games...

19.18

171.36

136.32

566.74

2787.12

1236.62

108.83

8.22

854.40

1027.20

18.66

345.96

1690.92

40.14

Should have picked better games...

16.52

Should have picked better games...

Should have picked better games...

UIL – Computer Science Judge’s Packet – State - 2024

17

Problem #10
60 Points

10. Nicholas

 Program Name: Nicholas.java Input File: nicholas.dat

Test Input File: (indented lines are continuation of previous line):
10

125

54757 86220 4050,60867 68514 8446,18417 52481 1762,37106 97878 1734,1179 41269

8901,70395 83711 2357,64234 88919 4147,94273 97087 1283,48309 85678

2935,56430 95762 2268,8255 32150 6082,97591 99809 4421,64778 79358 7899,3846

93063 4324,44645 93303 2073,27463 49912 1362,82839 92563 6690,91570 97978

8482,71274 79536 1436,38693 47144 7226,68389 76119 3980,85423 98694

5351,96279 98968 5380,56618 70340 1690,90954 91735 8034,85353 96633

1734,85264 91794 4300,39745 72674 8783,71295 93223 9882,27090 96403

6004,42490 94521 6864,99237 99715 171,68023 86840 5805,52466 65384 5990,20267

69878 1459,59430 72653 2322,7618 32755 9807,61136 71748 7061,61025 62247

5507,71796 89391 3413,64751 97156 4395,39376 80659 6576,96183 99124

9009,57368 68405 9759,61570 89473 561,28898 58107 2703,54909 89009 5497,49593

97558 3909,75852 90786 1410,50295 71542 969,74267 80091 6332,40957 41077

7315,28440 39528 8322,31758 40330 654,50001 78125 2916,2434 52358 9746,60370

78507 3955,14120 84566 5331,24310 39021 6083,44886 48675 5265,9381 74305

2697,8066 50684 7494,73509 79111 2413,26079 58282 681,54194 97250 6511,68509

94364 6294,34312 66213 3753,75737 89488 6950,13039 21192 2258,24668 28704

9900,92763 93641 8665,14365 28687 6975,60308 83394 5801,62285 98343

9967,54435 95985 2846,79109 99659 4645,62070 68971 8229,96721 96733

5053,18551 33681 9925,41928 46884 9845,27340 31167 594,2317 85141 2675,92041

99763 4249,11677 61456 2429,27593 46650 5512,74443 99973 5945,2306 80146

3466,52453 68257 4896,51931 75932 6869,96072 96450 406,99603 99883 832,25610

30623 8655,39627 46887 2725,60499 78755 9852,81442 82934 5225,72371 93569

2404,65497 86988 1273,65991 82616 6475,22292 91059 836,97772 99911 3138,46555

88608 5433,46670 93235 680,52135 81300 8451,94917 95984 824,90913 93998

8298,36875 85737 9383,97030 99639 6104,61123 73404 6686,21663 90984

9255,83493 93590 8461,73860 76568 8665,4483 42335 2371,79672 81589 9109,22444

59114 5375,19822 89491 3720,20754 99366 3095,39813 84789 2022,21530 94032

1718,34955 92212 4728,36179 56038 2070,65068 70484 2456,62243 79745

2672,23142 45692 2092,61955 94286 6200,72270 93773 6671

~ Input continues on next page ~

UIL – Computer Science Judge’s Packet – State - 2024

18

~ Nicholas Input file continued ~ (indented lines are continuation of previous line)
176

86979 88213 3354,6465 84421 9054,81672 89202 9195,45884 49069 8508,31836 78840

3019,64126 82229 8277,8110 73685 7276,73134 97438 8714,35594 61156 5302,82475

94261 4823,74541 79363 856,83636 92838 10,62215 98677 7778,177 99871

842,92340 99539 5278,91268 97645 3881,61064 85880 3664,14002 64977 5485,87442

88258 3113,68782 82098 4185,75424 87144 2473,99525 99937 7006,31036 43600

6922,41060 53240 9265,70533 78835 9011,86695 92456 7049,45019 66690

1652,43491 51089 2023,86376 98938 8748,97549 97957 5526,24976 40879

7239,89933 99061 8282,97865 99446 6687,11258 90187 421,18065 83549 381,32285

66612 5172,1879 81891 6975,64001 99986 6265,97206 98901 8732,65682 94439

1114,46833 67563 1515,17798 90202 7823,86334 86537 1004,39688 96652

7302,75984 90603 7804,43472 44283 1814,14252 99668 2672,76553 92956

7268,70649 97092 9112,58338 74527 9176,6724 10200 9084,72728 77579 6320,53824

94087 3979,38980 43903 3511,67978 88785 5820,69279 81183 6226,48363 71517

6749,93651 98425 7945,53639 86683 155,20720 65947 2553,76974 82445 6601,27356

46258 2610,97398 99122 7423,69971 97510 2573,43700 78994 9181,65608 87916

8437,23319 34917 1912,49764 63099 532,48394 51284 2506,20093 53577 9823,54723

66270 3761,77812 81819 4459,56869 63153 7378,81198 85745 9033,18936 67824

1064,94351 98422 4472,79990 99227 1955,8327 16668 9003,44960 97194 54,6451

25886 6755,4892 64650 587,59397 68469 8366,58261 86827 5883,53531 73237

78,70849 94111 8302,55640 75440 3181,93342 97518 2048,93035 98937 2790,91001

91812 4655,17054 77981 3916,70688 73289 8018,24039 87366 7801,89191 95735

3827,27323 61588 3724,19892 79352 2062,19796 22782 1020,48656 95791

2038,94975 96952 5035,75415 79624 9611,27823 87937 5137,56078 82950

8408,69817 91401 5841,25428 39309 6827,18111 24851 5501,70720 83255

1436,50360 95570 4877,57584 59357 4292,16372 36975 8115,53947 74008 223,78953

83295 6189,18285 65627 6891,49969 80296 1534,59344 72461 7475,66789 67621

8231,84174 85047 3096,59289 67774 4568,7989 94747 145,20710 52433 811,36070

99642 9928,86747 88023 351,57110 83850 3365,57903 88830 4755,26437 87691

8844,49516 71051 4323,13435 53410 4021,93123 94883 4160,41741 63526

2728,30240 44873 9204,44974 94718 1971,65969 68037 9596,80686 84634

5073,82639 93646 3907,6798 34888 9515,43048 88838 2436,98296 98561 9186,45846

59829 5726,17565 91386 3220,81502 96665 5889,4224 71930 8044,92689 98343

5907,4111 78480 6692,76425 95438 6998,51389 93389 4094,2843 55180 7940,71372

94001 8278,35096 43895 6132,8209 56359 2888,51873 85805 5588,54204 62462

4015,25734 52964 6073,74153 91881 5041,41672 66753 3761,66380 93898

3423,37665 79647 1922,74266 74516 7456,66638 82758 9884,80086 88528

3953,63299 85097 5520,53534 66675 7218,13150 49740 6390,46700 95649

9047,70238 94774 4052,86616 88891 9914,27516 63137 6395,6451 30705 4860,74128

91679 1878,22434 50395 8443,59534 79424 4437,30725 70936 1714,49503 65724

7451,96552 99166 8644,95139 99917 2489,96384 97533 8321,26947 98636

3455,66954 91809 4206,32361 66675 8156

13

18388 97622 2026,1745 80115 6104,85145 93327 2989,81558 94721 4529,39279 61319

711,99703 99932 6305,2876 51755 6699,55766 80806 9201,40265 70096 5092,80828

81841 2221,5980 62620 9752,42830 46241 510,67509 79180 3

~ Input file contains 151 lines of data, some lines very long – see nicholas.dat file for complete input ~

~ Output on next page ~

UIL – Computer Science Judge’s Packet – State - 2024

19

~ Nicholas continued ~

Test Output To Screen:
69 81 54 5 120 108 19 49 17 31 75 26 78 86

78 80 128 4 60 82 109 50 56 17 43 45 48 97 173 30 33 38

7 8 10 1 6

44 34 37 42 17 16 22 41 43 32

60 42 41 69 113 26 107 28 66 64 106 70 72 45 102 5

8 36 34 23 16 3 35 2 25 37

94 37 95 100 59 1 96 24 56 108 21 22 26 33 121 60

23 25 7 26 12 18 8 32 13

62 10 99 116 53 146 128 145 15 97 59 2 52 42 130 102 140 152

25 98 121 16 113 21 24 3 33 40 69 27 123 114 65 67 46

UIL – Computer Science Judge’s Packet – State - 2024

20

Problem #9

60 Points

11. Rufus

 Program Name: Rufus.java Input File: rufus.dat

Test Input File:
7 12

Business

Bizness

Busyness

Bussness

Business

Busstin

Buziness

buzinezz

Economics

Ecanomix

Ecenahmecs

Economics

Economy

Ekinaumiks

Economics

Ekonomiks

ABCDE

ABCD

ABCDF

ABDC

ABCDE

ABCDEF

ABCCE

BCDEF

ABCDE

ABC

AB

ABD

ABCDEFGHIJ

FAC

BCD

ACE

ABCDE

A

B

C

D

E

DF

CW

~ Input continues next column ~

~ Input continued from previous column ~
ABCDE

AQ

B

C

DD

EF

WA

CCCCC

ABC

ASDFGHJKL

QWERTYUIO

ZXCVBNMKL

FTYUJNBVF

MNBFTYUIK

QWERTYUIP

LKJHGFDSA

Somebody

Somebodeh

Sumbawdee

somebody

somebodeh

somebodah

Sombodies

Somebodied

Impossible

Iampossible

kimpossible

impossible

impossible

impossible

impossible

impossible

Correct

CORRECT

CoRrEcT

cOrReCt

correct

cORREct

CORRect

correct

~ Input continues on next page ~

UIL – Computer Science Judge’s Packet – State - 2024

21

~ Rufus Input continued (previous page contained shorter lines, this one contains long lines) ~

~ (indented lines are continuation of previous line) ~
rtyuikjbvcdftyuiknbvcFTYUIKNBVCDRTYIOlkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRTYUJN

BVCDRTYUJHFDRTyytrewsxdewsxdewsxdeSERFCXSERFDXSERFDERFdertyuikllkokjkiokjkJIK

MJIKMNJIKMJKMJKMNJKIMJ

rtyuikjbvcdftyuiknbvcFTYUIKNBVCDRTYIOlkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRTYUJN

BVCDRTYUJHFDRTyytrewsxdewsxdewsxdeSERFCXSERFDXSERFDERFdertyuikllkokjkiokjkJIK

MJIKMNJIKMJKMJKMNJKIMJ

rtyuikjbvcdftyuiknbvcyujnbvfyujnbvghjnblkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRTYU

JNBVCDRTYUJHFDRTyytrewsxdewsxdewsxdeSERFCXSERFDXSERFDERFdertyuikllkokjkiokjkJ

IKMJIKMNJIKMJKMJKMNJKI

rtyuikjbvcdftyuiknbvcFTYUIKNBVCDRTYIOlkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRBVCDR

TYUJHFDRTyytreFCXSERFDXSERFDEwsxdewsxdewsxdeSERRFdertyuikllkokjkiokjkJIKMJIKM

NJIKMJKMJKMNJKIMJFCXSE

rtyuikjbvcdftyuiknbvcFTYUIKNBVCDRTYIOlkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRTYUJN

BVCDReSERFCXSERFDXSERFDERFdertyuikllkokjkiokjkJIKMJIKMNJIKMJKMJKMNJKIMJTYUJHF

DRTyytrewsxdewsxdewsxd

rtyuikjbvcdftyuiknbvcFTYUIKNBVCDRTYIOlkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRTYURT

YUJHFDRTyytrewsxdewsxdeSERFCXSFDERFdertyuikllkokjkiokjkJIKMJIKMNJIKMJKMJKMNJK

IMJkjbvcdftyuiknbvcFTY

rtyuikjbvcdftyuiknbvcFTYUIKNBVCDRTYIOlkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRTYUJN

BVCDRTYUJHFDRTyytrewsxdewsxdewsxdeSERFCXSERFDXSERFDERFdertyuikKIMJ

rtyuikjbvcdftyuiknbvcFTYUIKNBVCDRTYIOlkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRTYUJN

BVCDRTYUJHFDRTyytrewsxdewsxdewsxdeSERFCXSERFDXSERFDERFdertyuikllkokjkiokjkJIK

MJIKMNJIKMJKMJKMNJKIMJFCXSERFDXSERFDE

qwertyuiopasdfghjklzxcvbnm

qwertyuioplkjhgfdsazxcvbnm

mnbvcxzlkjhgfdsapoiuytrewq

qazxswedcvfrtgbnjhyujmllop

qwertyuioplkjhgfdsazxcvbnm

azxcyuioplkjhvbnmqwertgfds

jhgfdsazxcvbnmqwertyuioplk

qwertyuiopasdfghjklzxcvbnm

Test Output To Screen: (indented lines are continuation of previous line)
Business Quiz Average: 6.00

Economics Quiz Average: 6.57

ABCDE Quiz Average: 3.86

ABCDE Quiz Average: 2.14

ABCDE Quiz Average: 1.00

ABCDE Quiz Average: 0.71

ABC Quiz Average: -5.43

Somebody Quiz Average: 5.29

Impossible Quiz Average: 9.71

Correct Quiz Average: 7.00

rtyuikjbvcdftyuiknbvcFTYUIKNBVCDRTYIOlkmnbvcdsetyujgtyujvcdftyujBVFTYUJVFDRTYUJN

BVCDRTYUJHFDRTyytrewsxdewsxdewsxdeSERFCXSERFDXSERFDERFdertyuikllkokjkiokjkJIK

MJIKMNJIKMJKMJKMNJKIMJ Quiz Average: 151.43

qwertyuiopasdfghjklzxcvbnm Quiz Average: 9.71

UIL – Computer Science Judge’s Packet – State - 2024

22

Problem #12
60 Points

12. Victoria

 Program Name: Victoria.java Input File: victoria.dat

Test Input File:
Start with a simple passphrase

Add some extra digits & special chars!

Computer Science UIL 2019!!

ing is a prefix of the word ingot and a suffix of confusing and challenging

AAAAA 12345 *&^%$ zyxwv q8Z@~ !Mp76

make 25% longer, with special chars

tooo bare forr pass

I really HATE PASS phrases

Needs more words

Let's really SHAKE UP this UIL Contest

Computer Science UIL 2019

how do they come up with this garbage?

A1 && but not OK

bUILding JAVA programs always challenging

longbutnospaces

Java Austin TX May 2019

They drive STUDENTS cra-cra or perhaps CRAY-CRAY (as in computers?), LMAO!!

TxUIL PROBLEM WRITERS are TOTALLY out of their MINDS!

bUILding JAVA programs always challenging

One word is just another word just saying...

One word is just another word, or is it?

IT is what IT is and that isn't what it means!

Pre isn't a prefix or suffix of prewordpre

theprefix comes beforethe the suffix

1234 4123 2134 4123 1

1234 4123 2134 4123 1111

Test Output To Screen:
110:Adequate

140:Strong

0:Unacceptable

110:Adequate

160:Excellent

125:Strong

0:Unacceptable

110:Adequate

0:Unacceptable

165:Excellent

0:Unacceptable

135:Strong

0:Unacceptable

120:Adequate

0:Unacceptable

0:Unacceptable

225:Excellent

~ output continues next column ~

~ output continued from previous column ~
195:Excellent

120:Adequate

105:Adequate

130:Strong

140:Strong

145:Strong

80:Weak

0:Unacceptable

115:Adequate

UIL – Computer Science Judge’s Packet – State - 2024

23

	UILCS_State_2024_Student_Packet.pdf
	UILCS_State_2024_JUDGE_Packet.pdf

