
UIL – Computer Science Programming Packet - Invitational A - 2024

 1

Computer Science Competition

Invitational A 2024
Programming Problem Set

I. General Notes

1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.

2. All problems have a value of 60 points.

3. There is no extraneous input. All input is exactly as specified in the problem. Unless
specified by the problem, integer inputs will not have leading zeros. Unless otherwise
specified, your program should read to the end of file.

4. Your program should not print extraneous output. Follow the form exactly as given in the

problem.

5. A penalty of 5 points will be assessed each time that an incorrect solution is submitted.
This penalty will only be assessed if a solution is ultimately judged as correct.

II. Names of Problems

Number Name

Problem 1 Akansha

Problem 2 Andrew

Problem 3 Bautista

Problem 4 Chuanli

Problem 5 Dominika

Problem 6 Gerald

Problem 7 Hiro

Problem 8 Joan

Problem 9 Manisha

Problem 10 Patryk

Problem 11 Rodrigo

Problem 12 Svetlana

UIL – Computer Science Programming Packet - Invitational A - 2024

 2

1. Akansha

 Program Name: Akansha.java Input File: None

This is the year!!! The time is now!!! Leaguetown HS is ready to go to state in UIL Computer Science. Akansha is the coach and

she is determined to work as hard as she can to get her students ready for the contest season.

In order to do this, she is making a poster with the 2023 UIL Computer Science State Champions. She is printing the conference,

the team score, and the school from all six State Champions.

Will you help her? Write a program to print the chart below exactly as you see in the sample. With your help. Leaguetown HS

may be on the verge of making history.

Input: None

Output: Your chart will have seven lines - a title line followed by six lines including the conference, the score, and the school

name. The output should be formatted exactly as shown below. Note that all letters are uppercase.

Sample input:
None

Sample output:
2023 UIL COMPUTER SCIENCE STATE CHAMPIONS

1A 501 ASPERMONT

2A 838 SAN AUGUSTINE

3A 921 FORT WORTH HARMONY INNOVATION

4A 1026 NEEDVILLE

5A 1193 FRISCO LEBANON TRAIL

6A 1186 ALLEN

UIL – Computer Science Programming Packet - Invitational A - 2024

 3

2. Andrew

 Program Name: Andrew.java Input File: andrew.dat

Andrew is simply mesmerized by one-digit natural numbers. He has spent countless hours … hmm ... counting from one to nine.

Numbers ten and greater do not impress him. He does not even think about numbers less than one (as he is a very positive

person). Don't even attempt to give him a decimal number.

Andrew wants the user to input a natural number. He would like a program to list the one-digit factors of the number written in

word form. Please write the program that will do just that.

Input: The first line of data will be an integer in the range [1,20] indicating the number of data sets. Each data set will contain

one integer in the range [1,1000000].

Output: Each output line will contain one or more of the words {ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,

NINE} separated by one space. The words represent the one-digit factors. These should be written in numerical order where

ONE is first and NINE is last.

Sample input:
5

7

100

63

42

2520

Sample output:
ONE SEVEN

ONE TWO FOUR FIVE

ONE THREE SEVEN NINE

ONE TWO THREE SIX SEVEN

ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE

UIL – Computer Science Programming Packet - Invitational A - 2024

 4

3. Bautista

 Program Name: Bautista.java Input File: bautista.dat

Bautista had a traumatic learning experience when he was a child. The week that his elementary school class was learning about

vowels was not a good week for him. He had a terrible toothache all week and it caused him extraordinary pain. Now, whenever

he encounters a vowel, he feels the same pain he felt so long ago in that classroom. He thinks, "OUCH!!!"

Your job is to write a program to help him visualize his pain. Allow the user to input a word. Replace each vowel with

"OUCH!!!" As you do this, make sure there is no white space separating any part of each output.

Input: The first line of data will be an integer in the range [1,20] indicating the number of data sets. Each data set will contain

one word written in lowercase letters with no spaces and no punctuation. Words will have a length in the range [1,20].

Output: Each output line will contain lowercase consonants and OUCH!!!'s. "y" will not be considered a vowel. There should

be no white spaces between characters in your output.

Sample input:
6

university

aardvark

brrr

computer

science

aaaaa

Sample output:
OUCH!!!nOUCH!!!vOUCH!!!rsOUCH!!!ty

OUCH!!!OUCH!!!rdvOUCH!!!rk

brrr

cOUCH!!!mpOUCH!!!tOUCH!!!r

scOUCH!!!OUCH!!!ncOUCH!!!

OUCH!!!OUCH!!!OUCH!!!OUCH!!!OUCH!!!

UIL – Computer Science Programming Packet - Invitational A - 2024

 5

4. Chuanli

 Program Name: Chuanli.java Input File: chuanli.dat

Your friend Chuanli accidentally drank backwards potion, so now he writes everything backwards! This is really bad timing, as

he has a paper due tomorrow. You need to write a program to reverse the order of all the words in his paper, as well as reversing

all the letters in each word, so that Chuanli will pass.

Input:
The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case will

consist of an unknown number of space-separated strings to be reversed. These strings can be made up of any ASCII character,

and each test case will appear on its own line.

Output:
Output the lists of strings, with the order of the strings reversed, and the order of the characters in each of the strings reversed as

well, with all the words being separated by spaces. Each test case output should appear on its own line.

Sample input:
3

eM stI olleH

snoitaluclac ym ot gnidroccA

A na em eviG syaS ilnauhC

Sample output:
Hello Its Me

According to my calculations

Chuanli Says Give me an A

UIL – Computer Science Programming Packet - Invitational A - 2024

 6

5. Dominika

 Program Name: Dominika.java Input File: dominika.dat

An equilateral triangle is a triangle in which all three sides are the same length. An equilateral triangle is also equiangular,

meaning that all three interior angles are congruent and are each 60 degrees. For example, if the points (7,-6) and (1,2) are given,

two equilateral triangles can be formed. The first triangle (dashed lines) is formed with the addition of the point A (-2.93,-7.2),

and the second triangle (dotted lines) is formed with the addition of the point B (10.93,3.2). Note: these values are rounded to

two decimal places.

Dominika has been given two coordinates representing two out of the three points on an equilateral triangle, but the third point is

missing. Can you help Dominika write a program that is able to find these two missing points?

Input: First line will contain an integer N in range [1,20], the number of test cases. Each of the following N lines will contain

four whole numbers, separated by spaces. These numbers represent Ax Ay Bx By, where A and B are the two given points. All

whole numbers will be in range [-20,20].

Output: For each test case you are to output: “Test case: #” where # is the current test case, followed by the two points

that are missing, that are needed to make the two equilateral triangles. Each point is to be printed out on its own, individual line.

All output should be rounded and printed out to two decimal places. The point with the smallest x value should be output first. If

both x coordinates are the same, then output the point with the smallest y value.

Sample Input and Output on next page

UIL – Computer Science Programming Packet - Invitational A - 2024

 7

Dominika continued…

Sample input:
10

4 -7 7 14

-10 -14 -1 2

9 8 -18 5

7 -6 1 2

-15 -1 -14 15

1 -16 -13 11

-5 4 8 -13

-6 -2 8 18

3 -16 1 -12

0 0 3 0

Sample output:
Test case: 1

(-12.69,6.10)

(23.69,0.90)

Test case: 2

(-19.36,1.79)

(8.36,-13.79)

Test case: 3

(-7.10,29.88)

(-1.90,-16.88)

Test case: 4

(-2.93,-7.20)

(10.93,3.20)

Test case: 5

(-28.36,7.87)

(-0.64,6.13)

Test case: 6

(-29.38,-14.62)

(17.38,9.62)

Test case: 7

(-13.22,-15.76)

(16.22,6.76)

Test case: 8

(-16.32,20.12)

(18.32,-4.12)

Test case: 9

(-1.46,-15.73)

(5.46,-12.27)

Test case: 10

(1.50,-2.60)

(1.50,2.60)

UIL – Computer Science Programming Packet - Invitational A - 2024

 8

6. Gerald

 Program Name: Gerald.java Input File: gerald.dat

Gerald is just beginning to learn programming and still stumbles at times. He has a collection of data to use while practicing his

programming skills. For now, he would like to extract some basic characteristics of that data like the smallest and largest

numbers and the mean or average.

Can you help Gerald?

Input: An unknown number of lines containing whitespace-separated integers in the range [1000, 9999]. There will be no more

than 100 integers.

Output: Just four items, the count of integers that were input, the smallest and largest integers found in the data and the mean or

average displayed with exactly one digit after a decimal point. Label and format the results exactly as shown below in the

sample output.

Sample input:
5867 4237 9708 9677 4971 2699 6391 7321 7171

7073 2882 5315 2708 7861 1856 9658 5354

6305 1764 9054 5554 7846 6725 8234 2305 7672 6042

1827 1882 9111 2406 5853 5911

7843 1410 3959 6975 2491 2331 9795 2855 7434

1262 1120 8278 2227 9911 3328 5967 9607 9878 1326

7138 4192 5937 2893 9403 2452 6843

2821 6871 5424 5376 3834 5234 8013 3037

1175 3983 2095 7873 8505

4781

Sample output:
COUNT:73

SMALLEST:1120

LARGEST:9911

MEAN:5412.6

UIL – Computer Science Programming Packet - Invitational A - 2024

 9

7. Hiro

 Program Name: Hiro.java Input File: hiro.dat

Surprise! For your birthday your mom got you a roman soldier named Hiro who can help with your math homework. The only

issue is, all his answers are in roman numerals. You need to write a program to convert all his roman numeral answers into

decimal numbers so you can complete the math homework. Roman numerals are listed as uppercase letters, with each letter

corresponding to the following values:
I - 1

V - 5

X - 10

L - 50

C - 100

D - 500

M - 1000
All roman numerals will be listed in descending order by value, except for the special case when a lower value character is listed

before the character with a greater value (such as IV, which is the value 4), we subtract the lower value from the higher value.

Input:
The input will begin with an integer, n, denoting the number of test cases to follow. Each test case will consist of a string of

roman numerals to be converted. Each string will contain only uppercase alphabetic ASCII characters, each case will appear on

its own line.

Output:
Output the integer value that is equivalent to the string of roman numerals given.

Sample input:
3

MCMIV

XIVII

IVI

Sample output:
1904

16

5

UIL – Computer Science Programming Packet - Invitational A - 2024

 10

8. Joan

 Program Name: Joan.java Input File: joan.dat

Joan really enjoys her programming class but her true passion is the English language. However, programming has caused her

to view English writings somewhat differently and she realizes that words are simply pieces of data put together carefully to

create a desired meaning. For now, she has decided to practice her programming skills by creating a program to perform a very

simple analysis of relatively small pieces of prose.

Joan has big plans for analyzing written pieces but decided to start with a program that simply counts the number of words in a

sample of prose and calculate the average length of all words.

Input: A sample of English prose with an unknown number of lines containing an unknown number of whitespace-separated

words on each line. The number of lines will be in the range [2,25]. Words may consist of both uppercase and lowercase letters

and there are no non-letter symbols or numbers.

Output: A single line containing the number of words and the calculated average length of all words, formatted exactly as

shown below in the sample output. The average length is rounded to the nearest whole number.

Sample input:
Joan really enjoys her programming class but her true passion is the English language

However programming has caused her to view English writings somewhat differently

and she realizes that words are simply pieces of data put together carefully to

create a desired meaning For now she has decided to practice her programming skills

by creating a program to perform a very simple analysis of relatively small pieces of

prose

Joan has big plans for analyzing written pieces but decided to start with a program

that simply counts the number of words in a sample of prose and calculate the

average length of all words

Input A sample of English prose with an unknown number of lines containing an

unknown number of whitespace separated words on each line The number of lines will be

in the range Words may consist of both uppercase and lowercase letters and there are

no nonletter symbols or numbers

Output A single line containing the number of words and the calculated average length

of all words formatted exactly as shown below in the sample output The average length

is rounded to the nearest whole number

Sample output:
189 words with an average length of 5 letters

UIL – Computer Science Programming Packet - Invitational A - 2024

 11

9. Manisha

 Program Name: Manisha.java Input File: manisha.dat

Manisha is preparing for her boolean algebra exam where she will need to show mastery in her ability to write boolean equations

from their equivalent digital electronics symbols. More specifically, Manisha will need to write several sums of products. A

valid sum consists of one or more variables (denoted by a single uppercase letter) with a possible negation tied to an individual

variable (denoted by the character ‘/’).

While Manisha is confident in her abilities to derive those boolean equations, she is not so confident in her ability to format her

answer properly for the auto-grader to mark her answer as correct. For an answer to be marked as correct, it needs to be

formatted as follows:

1. Within a given product, products should be sorted…

a. First by increasing alphabetical order.

b. Second by the presence of a negated relation.

1) I.e., A comes before /A

2. Between different products, products should be sorted…

a. First by increasing length.

b. Second by increasing alphabetical order.

c. Third by the presence of a negated relation.

1) I.e., ABC comes before A/BC

3. Extraneous spaces should be removed from the equation as a whole…

a. Within a given product, there should not be any spaces between symbols.

b. Between any two given products there should only be a single + with no spaces on either side.

Help Manisha by writing her a program that will format her answer in the format mentioned above.

Input:

The first line of input will consist of a single integer 𝑛 (1 ≤ 𝑛 ≤ 100) denoting the number of testcases to follow. The next 𝑛

lines will each contain a single string indicating the sum of products that Manisha wishes to format properly. It is guaranteed that

each product is fully simplified and therefore a given variable name will not appear more than once within a given product.

Output:

For each of Manisha’s 𝑛 requests, on their own line, print a single string which is formatted as described above.

Sample input:
3

FEDA

ABCD+BCDE+/CDEF+CDEF+/ABCD+A/BCD

ABCD + BCDE + /CD EF + CDEF+/ABCD+ A/BCD+A+B+CD+PA

Sample output:
ADEF

ABCD+A/BCD+/ABCD+BCDE+CDEF+/CDEF

A+B+AP+CD+ABCD+A/BCD+/ABCD+BCDE+CDEF+/CDEF

UIL – Computer Science Programming Packet - Invitational A - 2024

 12

10. Patryk

 Program Name: Patryk.java Input File: patryk.dat

Patryk needs help with an unusual sorting problem. He has a list of 5-digit numbers and needs them sorted so the numbers are

sorted from right-to-left instead of a normal left-to-right order.

Given numbers: 53334 82529 47619 68398 90010 23633 52118 49703 62205 56691 73206

Ascending sort: 23633 47619 49703 52118 53334 56691 62205 68398 73206 82529 90010

Descending sort: 90010 82529 73206 68398 62205 56691 53334 52118 49703 47619 23633

“Reverse-digit”

Ascending sort: 90010 56691 49703 23633 53334 62205 73206 62258 48458 47619 82529

The “Reverse-digit” sorted list starts with all numbers that end with 0 and following numbers are increasing in that position

finishing with those that end with 9. The third and fourth numbers both end with 3, so they are sorted by the next digit to left

and, when that digit is the same as in 48458 and 62258, the next digit establishes the correct order. The same process is used

when the remaining digits match, the digit to left determines their correct order.

Can you help Patryk solve this sorting problem?

Input: First line will contain an integer in range [5,50] which is the number of integers that follow remaining lines of data,

separated by whitespace. All those integers are 5-digit numbers in range [10000, 99999].

Output: A vertical list of the “reverse-digit” sorted numbers as described above.

Sample input:
11

53334 82529 47619 48458 90010 23633

62258 49703 62205 56691 73206

Sample output:
90010

56691

49703

23633

53334

62205

73206

62258

48458

47619

82529

UIL – Computer Science Programming Packet - Invitational A - 2024

 13

11. Rodrigo

 Program Name: Rodrigo.java Input File: rodrigo.dat

You and your best friend Rodrigo have decided to travel together. Rodrigo comes from money so you guys have some funds to

travel with, however you need to determine where you can go with the amount of money you have, and which of those places

you’d be most excited to go to. Rodrigo’s parents would like you guys to learn something from this trip, so they have added

some interesting stipulations if you are going to go:

● You have unlimited money when it comes to spending money and hotels.

● You will be given a money limit for travelling.

● You are only allowed to take planes from place to place.

● You will always begin in Dallas, but you can end anywhere (don’t worry about the return journey).

● You need to show them a sorted list of the places you can afford to go to, in the order in which you are excited to go.
The list will be sorted by the following criteria:

1. First sort the list based on the number of attractions, in descending order, then

2. Sort by the culinary rating of the city, in descending order, then

3. Sort by the price of staying, in ascending order, then

4. Sort by the tourist rating of the city, in descending order, then

5. Sort the cities alphabetically.

Input: The input will begin with two integers, c and f, denoting the number of cities and flights, respectively, followed by an

integer m denoting the amount of money you and Rodrigo have for flights. Each of the following c lines will contain a city

listing, consisting of the following values: a string name denoting the name of the city, a decimal value trtg denoting the

tourist rating of the city, a decimal value price denoting the price to stay in the city, an integer value att denoting the number

of attractions, and a decimal value crtg denoting the culinary rating of the city, all separated by spaces. After this, the next f

lines will each contain a flight listing, consisting of 2 strings, a and b, denoting the cities where the flight will go to and from

(can go in either direction), followed by price, a decimal value denoting the price of the flight. The city of Dallas will always

be included in the flights, but not in the listed cities.

Output: Output a numbered ranked list of the city names that you are most excited to visit, in the format shown in the Sample

output section below, with the number of the city in the list first, followed by a colon, followed by a space, followed by the name

of the city. To clarify: the cities in the list are any cities you can possibly visit on ANY path, not necessarily cities all on the

same path. If you can get to Milan and Prague, or Paris, on 2 separate paths, all 3 should be included.

Sample input:
5 8 2000

Prague 4.3 321.43 9 2.7

Milan 3.7 456.70 9 4.2

Casablanca 2.6 134.52 5 3.8

Paris 1.2 1000.03 10 2.5

Beijing 3.5 300.54 7 3.9

Prague Milan 400

Milan Casablanca 700

Prague Paris 550

Casablanca Paris 700

Dallas Paris 1200

Dallas Casablanca 1100

Milan Beijing 1800

Casablanca Beijing 2000

Sample output:
1: Paris

2: Milan

3: Prague

4: Casablanca

UIL – Computer Science Programming Packet – Invitational A - 2024

 14

12. Svetlana

 Program Name: Svetlana.java Input File: svetlana.dat

Svetlana’s favorite activity growing up was the classic board game, Checkers. Checkers is a turn-based game played on an 8 x 8

grid between two players, Team Red and Team Black. Each player begins with 12 pieces, staggered on the dark portions of the

board. Non-king pieces, typically called "men", denoted by a lowercase letter, can move diagonally forward only, one square at a

time, onto an empty adjacent dark square. They capture opponent's pieces by jumping over them forward diagonally if there is an

empty square immediately beyond the jumped piece. As soon as a non-king piece makes it the full distance of the board, the

piece is transformed into a King, denoted as an uppercase letter, allowing it to move BOTH forward and backward! (Remember,

non-king pieces can only move diagonally forward.) Red’s home position will always be top of board with black’s home

position at bottom.

The goal of checkers is to capture all of the opponent’s pieces, without losing all of your own pieces. As soon as one player is

out of pieces, the game is over.

Svetlana needs your help determining how many unique single moves each team, Team Red and Team Black, can make in a

given board. Although some rules allow for a double jump, Svetlana is only considering single jumps.

For example, given the below board state:

 0 1 2 3 4 5 6 7

0 r r B r

1 r r r

2 r r

3 R

4 b

5 b

6 b b

7 b b b R

The legal moves are as follows:

Red valid single moves: 10

(0,3) → (1,4)

(1,2) → (2,3)

(1,6) → (2,5)

(2,1) → (3,0)

(2,7) → (3,6)

(3,2) → (4,1)

(3,2) → (5,4)

(3,2) → (2,3)

(7,6) → (6,5)

(7,6) → (6,7)

Black valid single moves: 6

(0,5) → (1,4)

(4,3) → (3,4)

(5,2) → (4,1)

(6,1) → (5,0)

(6,3) → (5,4)

(7,4) → (6,5)

Continued on next page…

UIL – Computer Science Programming Packet – Invitational A - 2024

 15

Svetlana continued…

Input: Input will begin with an integer N, the number of test cases. N is in the range [1,10]. Each of the following N

test cases will start with 16 dashes to serve as a divider between each of the boards. Following the dashes will be 8

rows representing the checkers board. Each valid space will be either a ‘r’, ‘R’, ‘b’, ‘B’, or ‘_’. Where ‘r’ denotes a

red non-king, ‘R’ denotes a red King, ‘b’ denotes a black non-king, and ‘B’ denotes a black King. The underscore

denotes the square is empty. All, individual squares will be separated by a space to simply the reading of the input.

Output: For each of the test case, you are to output “Test case: #” where # is the current test case. On the

subsequent line you are to output “Red valid single moves: RR” where RR denotes the number of valid

single moves available for red to make. On the next line, you are to output “Black valid single moves:

BB” where BB denotes the number of valid single moves available for black to make. To reiterate, no double jumps

are allowed.

Sample input:
4

_ r _ r _ B _ r

r _ r _ _ _ r _

_ r _ _ _ _ _ r

_ _ R _ _ _ _ _

_ _ _ b _ _ _ _

_ _ b _ _ _ _ _

_ b _ b _ _ _ _

b _ b _ b _ R _

_ r _ r _ B _ r

r _ r _ _ _ r _

_ r _ _ _ _ _ r

_ _ R _ _ _ _ _

_ _ _ b _ _ _ _

_ _ b _ _ _ b _

_ b _ b _ _ _ _

b _ b _ b _ R _

_ r _ r _ B _ r

r _ r _ _ _ r _

_ r _ _ R _ _ r

_ _ R _ _ _ _ _

_ _ _ b _ _ _ _

_ _ b _ _ _ _ _

_ b _ b _ _ _ _

b _ b _ b _ R _

_ r _ r _ B _ r

r _ r _ _ _ r _

_ r _ _ _ _ _ r

_ _ R _ _ _ _ _

_ _ _ b _ b _ _

_ _ b _ _ _ _ _

_ _ _ b _ _ _ _

b _ b _ b _ R _

Sample output:
Test case: 1

Red valid single moves: 10

Black valid single moves: 6

Test case: 2

Red valid single moves: 10

Black valid single moves: 8

Test case: 3

Red valid single moves: 14

Black valid single moves: 6

Test case: 4

Red valid single moves: 10

Black valid single moves: 9

UIL – Computer Science Programming Packet – Invitational A - 2024

16

