UIL — Computer Science Programming Packet — Invitational B - 2021

Dil
Computer Science Competition
Invitational B 2021

Programming Problem Set

|. General Notes

1.

2.

3.

Do the problems in any order you like. They do not have to be done in order from 1 to 12.
All problems have a value of 60 points.

There is no extraneous input. All input is exactly as specified in the problem. Unless
specified by the problem, integer inputs will not have leading zeros. Unless otherwise

specified, your program should read to the end of file.

Your program should not print extraneous output. Follow the form exactly as given in the
problem.

A penalty of 5 points will be assessed each time that an incorrect solution is submitted.
This penalty will only be assessed if a solution is ultimately judged as correct.

[I. Names of Problems

Number | Name
Problem 1 | Regina
Problem 2 | Arthur
Problem 3 | Denis
Problem 4 | Eugene
Problem 5 | Hannah
Problem 6 | Isamu
Problem 7 | Klaudia
Problem 8 | Manasa
Problem 9 | Melanie
Problem 10 | Paaus
Problem 11 | Sharon
Problem 12 [Tiffany

UIL — Computer Science Programming Packet — Invitational B - 2021

1. Regina
Program Name: Regina.java Input File: none

Regina would like to print an ASCII representation of the French flag.

The flag of France is a tricolor flag featuring three vertical bands colored blue (hoist side), white,
and red. Write a program that will print a 15 character tall by 60 character wide representation of
the French flag using capital ‘B’ for blue, capital ‘W’ for white and capital ‘R’ for red. Show the
flag where blue is on the left and red is on the right.

Input: none
Output: An ASCII representation of the flag of France.

Sample output:

BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR
BBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWRRRRRRRRRRRRRRRRRRRR

UIL — Computer Science Programming Packet — Invitational B - 2021

2. Arthur

Program Name: Arthur.java Input File: arthur.dat

A Pythagorean triple consists of three positive integers a, b, and ¢, such that a® + b? = c? given
that a + b < c. For example, a = 3, b = 4, and ¢ = 5 is an example of a Pythagorean triple.
This is true because 32 + 42 = 52 = 25. A triangle whose sides form a Pythagorean triple is
called a Pythagorean triangle, and is guaranteed to be a right triangle. Arthur needs your help in
determining if three, unsorted integers do in fact form a Pythagorean triple.

Input: Input begins with an integer N (1 <= N <= 10), the number of different test cases. Each of
the following N lines will contain three, unsorted integers guaranteed to be greater than 1 and
less than 100.

Sample Output: For each test case, you are to output the three integers in sorted order,
formatted as shown in the sample output, and whether the list is a Pythagorean triple or not
followed by a period.

Sample Input:

4 5

13 12
21

6 10 8

31 480 481
85 76 36

w U1 W o

Sample Output:

3, 4, 5 is a Pythagorean triple.

5, 12, 13 is a Pythagorean triple.

1, 2, 3 is not a Pythagorean triple.

6, 8, 10 is a Pythagorean triple.

31, 480, 481 is a Pythagorean triple.
36, 76, 85 is not a Pythagorean triple.

UIL — Computer Science Programming Packet — Invitational B - 2021

3. Denis
Program Name: Denis.java Input File: denis.dat

Denis is helping his little sister with her math homework which covers reducing fractions.
However, she usually needs help when Denis is at UIL Computer Science practice. Denis
decides to write a program that she can use while he’s away that will check whether she has
correctly reduced a given fraction or not.

Denis needs your help writing a program, that given a fraction, will reduce it. To reduce a
fraction, all you have to do is find the greatest common divisor (GCD) of both the numerator (the
number above the line in a fraction) and the denominator (the number below the line in a
fraction), then divide both the numerator and denominator by the GCD.

Input: Input begins with an integer C (1 <= C <= 20), the number of different test cases. Each of
the following C lines will contain a fraction in the form of N/D, where N is the numerator and D
is the denominator. N will be guaranteed to be an integer in range [—500,500], D will be
guaranteed to be in range [—500,0) U (0,500], and there is no restriction that N be less than,
equal to, or greater than D. N/D may be given in reduced form initially, so no reduction may be
needed.

Exact Output: For each fraction, you are to output: N/D reduced is X/Y, where X is the reduced
numerator and Y is the reduced denominator. Negative fractions should be manipulated so that
the minus sign goes with the numerator. Zero is represented by zero (0) as the numerator and one
(1) as the denominator.

Sample Input:
10
2/4
1/2
3/4
18/24
0/5
6/8
-4/-8
4/-8
-4/8
8/4

Sample Output:

2/4 reduced is 1/2
1/2 reduced is 1/2
3/4 reduced is 3/4
18/24 reduced is 3/4
0/5 reduced is 0/1
6/8 reduced is 3/4
-4/-8 reduced 1is 1/2
4/-8 reduced is -1/2
-4/8 reduced is -1/2
8/4 reduced is 2/1

UIL — Computer Science Programming Packet — Invitational B - 2021

4. Eugene

Program Name: Eugene.java Input File: eugene.dat

Eugene is in charge of creating usernames for new members of the Firethorne High School’s
White Hat Hackers Club. The usernames along with a password to the club’s web site must be
generated for each student. The usernames consist of the lower case version of the member’s first
and last initial followed by a four digit number. The number is simply the ASCII value of each of
the uppercase versions of the initials. For example, Tim Jones’ username would be tj8474. 84 is
the ASCII value of T and 74 is the ASCII value of J.

Of course, one or more members might have the same initials. When this turns out to be the case,
Eugene is going to prevent the duplicate by adding one to the ASCII value of the first initial until
there is no longer a duplicate username.

Input: The first line of the input file will contain a single whole number N that is the number of
names in the file. There will be no more than 50 names in the file. N will be followed by N club
member names each on a separate line where the first and last names are separated by a single
space. There may be members with the same first name or the same last name, but no members
will have the exact same first and last name. There will not be enough duplicates to require a
three digit value for the first initial.

Output: N lines where each line contains the member’s first and last name and their username.
The first name, last name and the username should each be separated by a single space.

Sample input:

6

Sung Habel

Rachal Vandyke
Jewell Krouse
Sally Hess
Claretta Mattinson
Rob Fillmore

Sample output:

Sung Habel sh8372

Rachal Vandyke rv8286
Jewell Krouse jk7475
Sally Hess sh8472
Claretta Mattinson cm6777
Rob Fillmore rf8270

UIL — Computer Science Programming Packet — Invitational B - 2021

5. Hannah
Program Name: Hannah.java Input File: hannah.dat

Hannah knows there’s most likely an arithmetic question on the written portion of the UIL
Computer Science test, that most likely is not going to be in decimal (base 10). Hannah has the
idea to write a program that will perform simple arithmetic, either addition, subtraction,
multiplication or division on two numbers in a given base. This way, Hannah can make up her
own sample questions, and check to see if she computed the correct answer. Can you help
Hannah with this?

Input: Input begins with an integer N (1 <= N <= 10), the number of different test cases. Each of
the following N test cases will consist of two lines. The first line will be an integer B, the base of
the numbers to be given as well as the base for the arithmetic. The base B will be in range [2,16].
The second line will contain two operands, opl and op2, separated by an arithmetic operator, s.
The input will be formatted as seen in the sample input. The operands will be guaranteed to be
valid integers for the given base B and will be in range [—B?8, B8]. The operators will either be:
+, -, /,0r*

Exact Output: For each test case you are to output: opl s op2 = resultant, where op1l is operand
1, s is the sign, op2 is operand 2, and resultant is the arithmetic result of the arithmetic performed
in base B. The resultant should be of type integer and all mathematical operations are of type
integer. If a letter is needed to represent the resultant, use only capital letters.

Sample Input:

S

10

10 + 15

2

1010 - 1111

4

31 * 1123

16

2E / F

7

123456 + 654321
3

2212 / 12

2

11111111 - 11111111

Sample Output:
10 + 15 = 25

1010 - 1111 = -101
31 * 1123 = 102133
2B/ F =3

123456 + 654321 = 1111110
2212 / 12 = 120
11111111 - 11111111 = O

UIL — Computer Science Programming Packet — Invitational B - 2021

6. Isamu
Program Name: Isamu.java Input File: isamu.dat

Isamu just got the latest edition of Pouch Monsters and cannot wait to go adventuring! In Pouch
Monsters, you build a team of the title creatures and visit all the cities in a region (the specific
region changes between games). Each city in a region has a dojo, and beating the game requires
defeating every dojo.

To travel between cities, Isamu uses the routes in the game. Each route connects two cities, and
can be travelled in either direction. Isamu can use each route multiple times, and can also visit
the same city multiple times. The only restriction is that he must visit each city at least once.
Given the layout of cities and routes in the game, what is the minimum amount of distance Isamu
needs to travel to beat the game?

Input:

The first line of input is a positive integer T (T <= 20), the number of test cases. The first line of
each test case has two integers C (1 <= C<=8) and R (C - 1 <= R <= 28), the number of cities
and the number of routes. The next line has C space separated names, the name of each city.
Isamu begins his adventure in the first city listed. The next R lines each have two cities and a
distance. The distance between any two cities is at most 100 units. Routes can be taken in either
direction, and there is at most one direct route between any pair of cities. It is always possible to
travel from one city to another using the given routes.

Each city name is a string of at most 15 lowercase English letters.
Output:
For each test case, output the minimum distance Isamu must travel to visit every city, formatted

as shown in sample ouput.

Sample Input and Output on next page...

UIL — Computer Science Programming Packet — Invitational B - 2021

Sample Input:

3

32

alpha beta gamma
alpha gamma 7
gamma beta 4

4 4

austin elpaso houston dallas
austin houston 3
dallas houston 5
dallas austin 4
austin elpaso 9

5 8

green brown blue yellow saffron
green brown 52
blue yellow 26
saffron brown 19
yellow saffron 12
green blue 21
saffron green 36
yellow brown 56
blue brown 66

Sample Output:
Case #1: 11
Case #2: 21
Case #3: 78

Sample Explanation:

In the first sample test case, Isamu can travel from alpha to gamma to beta, using the only
routes available for a total cost of 11.

In the second sample test case, one possible optimal route is austin, houston, dallas,

austin, elpaso.

UIL — Computer Science Programming Packet — Invitational B - 2021

7. Klaudia

Program Name: Klaudia.java Input File: klaudia.dat

Klaudia has been sent a message coded using Morse code. The message is quite long so Klaudia
needs a program to convert the Morse code to text. Morse code is based on a series of dots and
dashes typically transmitted using sound or light. However, Klaudia’s message is stored as a
series of text dots and dashes. Here is a key for each of the letters and for the digits. Your job is
to write a program that will read the Morse code in the file and then print the corresponding text
message.

Ae mm Ue o mm
Emmeee Veeoomm
Commomme We mm mmm
Demmee X mmm o o mm
Ee Y om0 mmm mmm
Feoeeomme Zumm e e
GCom mm o

Heeoeoo

| oe
&o--—

- e mm le sum som sum mm
Lommeoe 20 o mm mm mm
M - — Se e e mm mm
N mm o 4900 emm
O m m =m 5eceecee
Pommmae OCmmeeocee
Qum sun o = I _KEXK)

R e mme Comm oum mm o o
Seee Omm mu =u = o
T v O o e - —

By Rhey T. Snodgrass & Victor F. Camp, 1922 - Image:Intcode.png and Image:International Morse Code.PNG, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3902977

Input: The first line of the input file will contain a single whole number N. The first line will be
followed by N lines of Morse code. Each letter in the code will correspond to the table shown
above. There will be a single space between each letter and a forward slash / will signify a new
word. There will not be any punctuation in the message.

Output: N lines where each line contains the words in a single line of Morse code. Each word
should be separated by a single space. All of the output should be uppercase letters or numbers.

Sample input:

Sample output:

HEY KLAUDIA DO YOU

WANT TO GO TO THE ZOO
TO SEE LIONS AND TIGERS

UIL — Computer Science Programming Packet — Invitational B - 2021

8. Manasa
Program Name: Manasa.java Input File: manasa.dat

Manasa the superhuman likes swimming long distances in rivers, and relishes the challenge of
swimming against a river's current. However, even superhumans struggle while straining against
the current for long periods of time, so she takes breaks while swimming to regain her strength.

Formally, Manasa can swim at a rate of VV meters per second for T seconds. After T seconds, she
has to recharge for S seconds, during which time the river carries her back at a rate of W meters
per second.

Given that Manasa's source and destination are D meters apart, how many times does she need to
start swimming in order to reach the other side?

Input:

The first line of input is a positive integer N (N <= 50), the number of test cases. Each test case is
a single line with 5 integers V T W S D in order. Each of these is a positive integer at most
1,000,000,000.

Output:

For each test case, output the number of times Manasa must start swimming in order to reach her
destination. If it is impossible for Manasa to reach her destination, output "Impossible™. Format
your output with the case number as in the samples.

Sample Input:

3

241110

11112

31415 92653 58979 32384 626433827

Sample Output:

Case #1: 2
Case #2: Impossible
Case #3: 1

Sample Explanation:

In the first sample, Manasa can swim 2 meters per second for 4 seconds, then has to take a break.
After she swims 8 meters, she takes a 1 second break, during which the river's current takes her
backwards by 1 meter, leaving her 7 meters ahead of where she began. She reaches her
destination 10 meters from where she began during her second period of swimming.

In the second sample, Manasa swims a meter forwards, but then the current takes her back where
she began. She will never reach two meters out from where she began.

In the third sample, Manasa shows she is truly superhuman, and makes it to the shore during her
first swim.

10

UIL — Computer Science Programming Packet — Invitational B - 2021

9. Melanie
Program Name: Melanie.java Input File: melanie.dat

An anagram is a reordering of the letters in a word of phrase. For example, you can rearrange the
letters of stressed to get the word desserts. You can even make detesssr and
tsesrsed, which are both anagrams of st ressed even if they are not legitimate English
words. Melanie would like to write a program, that given a word, not necessarily a legitimate
English word, that will output the number of possible unique anagrams that can be formed from
the given word.

Input: Input begins with an integer N (1 <= N <= 10), the number of different test cases. Each of
the following N test cases will contain a word (not necessarily a legitimate English word) made
up of letters only. The letters may be upper or lower case, and upper and lower cases letters are
to be treated as distinct letters. The word will have a length of at least 1 and no more than 20.

Exact Output: For each test case you are to output the total possible unique anagrams that can
be made from the given word. Each anagram must use every letter, i.e., letters cannot be omitted
to make a shorter word.

Sample Input:
0

abc

att

aabbcc
ordeals
abcdABCDabcd
desserts
terraced

Sample Output:
6

3

90

5040
29937600
3360

10080

11

UIL — Computer Science Programming Packet — Invitational B - 2021

10. Paaus
Program Name: Paaus.java Input File: paaus.dat

There are four types of integer literals in Java. To differentiate between the different kinds of
literals, each group has its own prefix.

The kinds of integer literals are:
e decimal literals, which allow programmers to write numbers in base 10, with no prefix
e hexadecimal literals, which allow programmers to write numbers in base 16, with prefix
IIOXII
e octal literals, which allow programmers to write numbers in base 8, with prefix "0"
e and binary literals which allow programmers to write numbers in base 2. with prefix "0b"

For example, Oxb2, 178, 0262, and 0010110010 are all different ways of writing the same
number.

Pauus has a positive number he wants to type into his Java program, but one of the keys on his
keyboard is broken. Help him find a way to input his desired number using the fewest number of
characters.

Input:

The first line is a positive integer T (T <= 60), the number of test cases. Each test case has N, the
number Pauus wants to type, and K, the broken key on his keyboard. N is a non-negative integer
written in base 10 less than or equal to 10°, and K is either a single digit or a lowercase english
letter in the range a—f.

Output:

For each test case, output the shortest integer literal that is equal to N and does not include the
digit K. Use lowercase English letters when outputting hexadecimal digits. If there are multiple
literals of the same length, output the one in the lowest base. If there are no way to write the
value, output "Impossible”. Format your answer with the case number as in the samples.

Sample Input: Sample Output:

3 Case #1: 017

15 5 Case #2: 33

33 2 Case #3: Impossible
17 1

Sample Explanation:

In the first sample, Paaus cannot write "15" as a decimal literal because it has a "5" in it. Instead
he chooses to write "017", the octal literal representing the same value.

In the third sample, it is impossible to write the value 17 as a Java literal without the "1" digit.

12

UIL — Computer Science Programming Packet — Invitational B - 2021

11. Sharon

Program Name: Sharon.java Input File: sharon.dat

Sharon would like to have a program that will simulate a game she is calling Drop Out. For each
round of the game there are a different number of players seated in chairs on a stage in a circle
numbered from 1 to the number of players. There is a trap door under each chair. At the
beginning of the game Sharon rolls one or two dice to determine the “cycle” for the game.
Sharon counts from one to the cycle number then pulls a lever that drops the player she lands on
through the trap door. (Don’t worry! There is a giant soft foam rubber pad under the stage.) After
that player takes the plunge, Sharon counts to the cycle number again and drops the next player
through the stage. When counting around the circle, Sharon only counts the players left in the
game. When only one player is still on the stage, they are declared the winner and then ...
Sharon goes ahead and drops them through the stage as well. Sharon is kind of evil that way!

In a game with 5 people named Tran, Alia Eun Marylee and America seated in order in chairs 1
through 5 Sharon rolls a 3 on her die. This means that Eun goes out first, Tran is next, then
America, next to last is Alia and the only one left is Marylee and she is declared the winner.

Input: The first line of the input file will contain a single whole number G that represents the
number of Drop Games to be played. The first line will be followed by G lines where each line is
a game. Each line will begin with a number C representing the cycle number for this game. C
will be followed by P the number of players in this game. Finally, P will be followed by P names
each separated by a space.

Output: The name of the winner of each game.

Sample input:

3

3 5 Tran Alia Eun Marylee America

4 3 Shantel Sydney Irving

2 8 William Deangelo Rolando Lieselotte Toby Yetta Dolly Roxy

Sample output:

The winner is Marylee
The winner is Sydney

The winner is William

13

UIL — Computer Science Programming Packet — Invitational B - 2021

12. Tiffany

Program Name: Tiffany.java Input File: tiffany.dat

Tiffany is a fan of the Dutch art movement De Stijl. She especially likes the works of artist Piet
Mondrian.

Piet Mondrian, Composition with Red, Blue, and Yellow, 1930.

Many of Mondrian's best known works are made of straight lines and solid colors like the one
above. They typically use few colors. Inspired by this art, Tiffany set out to make her own
paintings. Here is one of Tiffany's paintings:

Tiffany's canvas is made of R rows, each with C cells. Each cell in her painting has a color,
represented by a positive integer. A square is defined using two cells: an upper left cell (r1, c1)
and a lower right cell (r2, c2), where r2 - r1 = c2 - c1. A square is monochromatic if every cell (r,
c) where rl <r<r2 and cl <c <c2 is the same color. For example, using 1-based indexing for
the rows and columns, (1, 1) to (2, 2) is a monochromatic square (all cells have color 1), but (2,
2) to (3, 3) is not (there is a cell of color 1, a cell of color 2, and 2 cells of color 3). Furthermore
(3,1) to (3, 4) is not a square, because there are a different number of rows and columns.

Given the layout of Tiffany's painting, find the number of monochromatic squares in the
painting.

14

UIL — Computer Science Programming Packet — Invitational B - 2021

Input: The first line of input has an integer T (1 < T < 20), the number of test cases. Each test
case begins with two positive integers R and C, the number of rows and columns in Tiffany's
painting. The next R lines each have C space separated integers, the color of each cell of her
painting.

The sum of R * C over all test cases will not exceed 6,000,000. Each color in the painting is a
positive integer between 1 and 1,000,000,000, both bounds inclusive.

Output: For each test case, output the number of monochromatic squares in the grid, formatted
with the case number as in the samples.

Sample Input:

2

3 4
1122
1122
3333
4 3

8 7 8

5 31

2 4 6

6 2 1

Sample Output:
Case #1: 14
Case #2: 12

Sample Explanation: In the first sample, there are 5 squares of color 1, 5 squares of color 2, and
4 squares of color 3, for a total of 14 monochromatic squares.
In the second sample, all monochromatic squares are 1x1 squares.

15

