
UIL – Computer Science Programming Packet – Invitational A - 2021

1

Computer Science Competition

Invitational A 2021
Programming Problem Set

I. General Notes

1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.

2. All problems have a value of 60 points.

3. There is no extraneous input. All input is exactly as specified in the problem. Unless
specified by the problem, integer inputs will not have leading zeros. Unless otherwise
specified, your program should read to the end of file.

4. Your program should not print extraneous output. Follow the form exactly as given in the

problem.

5. A penalty of 5 points will be assessed each time that an incorrect solution is submitted.
This penalty will only be assessed if a solution is ultimately judged as correct.

II. Names of Problems

Number Name

Problem 1 Ana

Problem 2 Bryan

Problem 3 Ethan

Problem 4 Fatimah

Problem 5 Hai

Problem 6 Isaac

Problem 7 Jamari

Problem 8 Kirill

Problem 9 Megan

Problem 10 Oscar

Problem 11 Rebecca

Problem 12 William

UIL – Computer Science Programming Packet – Invitational A - 2021

2

1. Ana

 Program Name: Ana.java Input File: None

Ana is beginning the process of teaching her little sister how to square the numbers between 1

and 12. To square a number, Ana knows that the square of a number is equivalent to multiplying

that number by itself. She wants to write a program that will output the product of all numbers

between 1 and 12 multiplied by themselves. This way, her little sister can double check her work

when Ana is at school. Can you help Ana with this?

Input: There is no input for this problem.

Exact Output:
1*1=1

2*2=4

3*3=9

4*4=16

5*5=25

6*6=36

7*7=49

8*8=64

9*9=81

10*10=100

11*11=121

12*12=144

UIL – Computer Science Programming Packet – Invitational A - 2021

3

2. Bryan

 Program Name: Bryan.java Input File: bryan.dat

Bryan is having fun picking up summer jobs to earn some spending money. However, he isn't

particularly attentive to how much he is earning or how much he's spending. Some weeks, Bryan

finds that he's spent more money than he's earned, and his friends and family will soon refuse to

stop covering for him.

In order to better keep track of his expenses, Bryan keeps a journal where he writes down how

much he makes from each of his jobs and how much he spends each time he goes out. At the end

of each week, Bryan totals how much money he's earned and how much money he's spent. Can

you help him out by writing a program to do the summations for him?

Input:

The first line is a positive integer W, the number of weeks in this test set. Each week starts with a

single positive integer N, the number of transactions in that week. The following N lines each

have a string, which describes the transaction, and an integer after it, which is the amount Bryan

earned or spent. Positive integers mean Bryan earned that much for completing a job, and

negative integers mean that Bryan spent that much.

All integers in the input are non-zero and have absolute value at most 30. The descriptions are

strings of no more than 20 lowercase letters.

Output:

For each week, print the case number and:

● If Bryan earned more money than he spent, print "Wow, Bryan saved $XX"

● If Bryan spent more than he earned, print "Oh no! Bryan had to borrow $XX"

● If Bryan spent exactly as much as he earned, print "Phew, broke even!"

Replace XX with the appropriate dollar amount. Do not print any leading zeros, and do not print

any cents. Format the answer as in the samples.

Sample Input:
3

4

babysitting 10

lemonade 4

game -7

date -7

3

movies -10

mowing 5

carwashing 8

2

tutoring 4

clothes -7

Sample Output:
Case #1: Phew, broke even!

Case #2: Wow, Bryan saved $3

Case #3: Oh no! Bryan had to borrow $3

UIL – Computer Science Programming Packet – Invitational A - 2021

4

3. Ethan

 Program Name: Ethan.java Input File: ethan.dat

Ethan has just been hired by United Intercommunication Logistics to test a new unlock pattern

idea for their newest smartphone, the U-Cell 20. Their idea is to let the user choose a square grid

configuration of numbers representing their password to unlock their cellular device. Research

has shown that some users are more likely to remember a shape, or pattern, versus a sequence of

numbers. This form of unlock pattern is known as n-pivot unlock pattern, where n is a square of

an integer in the range [2,3]. Formally, an unlock pattern is a single stroke that visits each of the

four or nine pivots exactly once. The pattern may start at any pivot. It may pass a pivot multiple

times but only the first time counts as a visit. The phone unlocks if the pivots are visited in a

predefined secret order.

Your task is to compute the distance from 1 -> 2 -> … - > n-1 -> n. The distance between two

horizontal points is 1 unit and the distance between two vertical points is 1 unit.

An example, visual configuration for n= 9 is seen below, the total distance would be 9.8284

units.

Input: Input starts with a line containing an integer N (1<=N<=10), the number of test cases.

Each test case begins with an integer D (2 <= D <= 3) on a single line, the dimension of the

square grid to be used. The following D lines will contain D integers separated by spaces. The D

x D integers represent the predefined, secret configuration that would be used to unlock the

phone. All 𝐷2 numbers will be used in the password.

Output: For each test case, output “Case # distance: X.XXXX”. Where X.XXXX is the distance

from:1 -> 2 -> … -> 𝐷2 − 1 -> 𝐷2 rounded to 4 decimal places. For example, for Case 1 the

output would be: “Case 1 distance: 9.8284”

UIL – Computer Science Programming Packet – Invitational A - 2021

5

Sample Input:
8

3

6 1 9

5 2 8

4 3 7

2

1 2

3 4

2

1 2

4 3

3

1 2 3

6 5 4

7 8 9

3

1 8 5

7 2 4

6 9 3

3

1 6 8

2 3 4

7 9 5

3

1 2 5

6 3 4

7 8 9

2

1 4

3 2

Sample Output:
Case 1 distance: 9.8284

Case 2 distance: 3.4142

Case 3 distance: 3.0000

Case 4 distance: 8.0000

Case 5 distance: 12.0711

Case 6 distance: 13.5366

Case 7 distance: 9.2361

Case 8 distance: 3.8284

UIL – Computer Science Programming Packet – Invitational A - 2021

6

4. Fatimah

 Program Name: Fatimah.java Input File: fatimah.dat

Fatimah is playing a video game, Pouch Monsters. She's amassed a team of N amazing monsters,

but not all of them get along. More specifically, there are M pairs of monsters that do not get

along and refuse to go adventuring with each other.

Fatimah wants to go adventuring with as many of her monsters as possible. She's asked you to

write a computer program to help her out.

Input: The first line of input is T (1 <= T <= 20), the number of test cases. Each test case begins

with two integers N (1 <= N <= 12) and M (0 <= M <= 20), where N is the number of monsters,

and M is the number of pairs of monsters which do not get along. The following N lines each

have the name of one of Fatimah's monsters. The M lines after that each have the names of two

of Fatimah's monsters that do not get along.

All monster names are at most 20 lowercase English letters. All monsters listed in a pair are

guaranteed to appear in Fatimah's list of monsters. No pair will have the same monster listed

twice.

Output: For each test case, output the maximum number of monsters Fatimah can take with her,

formatted with the case number as in the samples.

Sample Input:
3

3 1

pikawho

charzar

meeth

pikawho meeth

4 2

kaysi

asa

rengo

seju

rengo kaysi

asa seju

5 0

kenny

rayu

chunnley

gail

baisen

Sample Output:
Case #1: 2

Case #2: 2

Case #3: 5

Sample Explanation:

In the first sample, Fatimah can always adventure with "charzar" and can choose to adventure

with either "pikawho" or "meeth". Regardless of who she chooses, she can adventure with at

most two monsters.

In the third sample, all five monsters get along, so she can adventure with all five of them.

UIL – Computer Science Programming Packet – Invitational A - 2021

7

5. Hai

 Program Name: Hai.java Input File: hai.dat

Hai has just begun to study regular expressions. Hai has a good idea of how regexes work but is always having to

look up the various expressions for characters, sets and groups. To make things easier, Hai has decided to write a

program that will make a list of examples for some of the regular expressions they have encountered so far. Their

program is going to read a line of text from a file and then compare each word in that line to several regular

expressions and then print all the words that match that regular expression.

Input: A single space delimited line of text. On the next line there will be a single number N representing the

number of regular expressions to check. N will be followed by N lines where each line contains a single regular

expression.

Output: The regular expression left justified in ten spaces followed by all the words in the line of text that match

that regular expression each separated by a space. If none of the words match the regular expression, print the

regular expression as usual followed by “No matches.”.

Sample input: (Note: the line of text will all be on the same line.)
Bill's phone number is 325-456-1234 and his email address is bill@gmail.com.

Let's give him a call ASAP.

3

[a-z]+

\D+

.+m+.+

Sample output: (Note: the output for each regular expression will all be on the same line.)
[a-z]+ phone number is and his email address is give him a call

\D+ Bill's phone number is and his email address is bill@gmail.com.

Let's give him a call ASAP.

.+m+.+ number email bill@gmail.com.

UIL – Computer Science Programming Packet – Invitational A - 2021

8

6. Isaac

 Program Name: Isaac.java Input File: isaac.dat

The computer company Isaac works for is introducing a brand new computer line and is

developing a new Unix-like operating system to be introduced along with the new computer.

Your task is to help Isaac write the formatter for the ls command (which lists directory contents).

Input to your program will consist of a list of F filenames that you will sort (ascending based on

the ASCII character values) and format into C columns based on the length L of the longest

filename. Filenames will be between 1 and 60 (inclusive) characters in length and will be

formatted into left-justified columns. The rightmost column will be the width of the longest

filename and all other columns will be the width of the longest filename plus 2. There will be as

many columns as will fit in 60 characters. Your program should use as few rows R as possible

with columns being filled to capacity from left to right.

Input: Input starts with a line containing an integer N (1<=N<=10), the number of test cases.

Each test case begins with an integer F (1 <= F <= 250) on a single line, the number of files for

the given case. The following line will contain F file names, separated by spaces. The filenames

are all valid names, but are not guaranteed to be in alphabetical order.

Output: For each test case, output Case # on one line followed by the column indexing for each

of the 60 spaces. You are then to output 60 dashes following the column indexing followed by

the formatted columns of filenames. The sorted file names 1 to R will be listed down column 1;

filenames R + 1 to 2R listed down column 2; etc. For row and column entries where a file name

is present, spaces should be output to completely fill the column. For row and column entries that

do not have a file name, there should not be any output, i.e., no spaces should be printed. Each

case’s output is separated by a blank line

Sample Input:
5

10

much_longer_name very_long_file_name shorter tiny size-1 size2

12345678.123 mid_size_name 2short4me size3

12

Weaser Alfalfa Stimey Buckwheat Porky Joe Darla Cotton Butch Froggy

Mrs_Crabapple P.D.

26

a b c d e f g h i j k l m n o p q r s t u v w x y z

21

abcdefg bcdefgh cdefghi defghij efghijk fghijkl ghijklm hijklmn

ijklmno jklmnop klmnopq lmnopqr 1111111 mnopqrs nopqrst opqrstu

pqrstuv qrstuvw rstuvwx stuvwxy tuvwxyz

23

Jody jody Buffy bubby sissy Sissy Keith Keith Danny Danny Lori Chris

Shirley Marsha greg Mike Greg jan Bobby Alice Ruben lori mike

UIL – Computer Science Programming Packet – Invitational A - 2021

9

Sample Output:
Case 1

 111111111122222222223333333333444444444455555555556

123456789012345678901234567890123456789012345678901234567890

--

12345678.123 size-1

2short4me size2

mid_size_name size3

much_longer_name tiny

shorter very_long_file_name

Case 2

 111111111122222222223333333333444444444455555555556

123456789012345678901234567890123456789012345678901234567890

--

Alfalfa Cotton Joe Porky

Buckwheat Darla Mrs_Crabapple Stimey

Butch Froggy P.D. Weaser

Case 3

 111111111122222222223333333333444444444455555555556

123456789012345678901234567890123456789012345678901234567890

--

a c e g i k m o q s u w y

b d f h j l n p r t v x z

Case 4

 111111111122222222223333333333444444444455555555556

123456789012345678901234567890123456789012345678901234567890

--

1111111 defghij hijklmn lmnopqr pqrstuv tuvwxyz

abcdefg efghijk ijklmno mnopqrs qrstuvw

bcdefgh fghijkl jklmnop nopqrst rstuvwx

cdefghi ghijklm klmnopq opqrstu stuvwxy

Case 5

 111111111122222222223333333333444444444455555555556

123456789012345678901234567890123456789012345678901234567890

--

Alice Danny Keith Mike bubby lori

Bobby Danny Keith Ruben greg mike

Buffy Greg Lori Shirley jan sissy

Chris Jody Marsha Sissy jody

UIL – Computer Science Programming Packet – Invitational A - 2021

10

7. Jamari

Program Name: Jamari.java Input File: jamari.dat

Jamari has a tiny donut shop in the tiny town of Fayetteville, Texas. Jamari makes fantastic

donuts that people come from miles around to buy. Jamari doesn’t like to work long hours, so he

doesn’t make many of his awesome donuts each morning. Consequently, his customers line up

early in the morning for a chance to get one of Jamari’s world famous donuts. When all the

donuts have been sold, Jamari closes his shop and anyone that didn’t get a donut has to wait until

another day. What we need for you to do today is write a program that will determine who the

last person was that got a donut each day.

Input: For each day there will be a list of names and numbers terminated with the string value

“>>>”. Each name represents a customer. Each number represents how many customers that
have been served since the last time a customer was served. When “>>>” is encountered it means

Jamari ran out of donuts and closed for the day. The number of days, number of customers each

day, and the number of customers served each day is unknown; however, the number of

customer names will never be less than the number of customers served and Jamari never has

donuts unsold!

Output: For each day, print one of the following:

● The statement “The last person to get a donut was <name>.” Where <name> is the name

of the last customer to be served followed on a separate line by “<number> customers did

not get a donut today.” Where <number> represents the number of customers that did not

get served.

● If no customers were served, print “No one got a donut today.”

● If every customer was served, print “Everyone got a donut today.”

Sample input:
Melany Jordyn Kaylynn Kyra Kasen Hassan Jaylah 2

Alexandria 1 Leonard Julianna Myles 3 Belinda

Jamari 1 Troy Chase Yasmin Zoey 5 Jaime Jade 4

Brooklyn >>> Tommy Aaliyah Ingrid April 3 Dwayne

Andres River Asa Jaslene 3 >>>

Sample output:
The last person to get a donut was Yasmin.

4 customers did not get a donut today.

The last person to get a donut was Andres.

3 customers did not get a donut today.

UIL – Computer Science Programming Packet – Invitational A - 2021

11

8. Kirill

 Program Name: Kirill.java Input File: kirill.dat

Kirill is learning about self numbers! Let 𝑆𝑂𝐷(𝑛) be the sum of the digits in 𝑛. For example,

● 𝑆𝑂𝐷(56) = 5 + 6 = 11

● 𝑆𝑂𝐷(2) = 2

● 𝑆𝑂𝐷(304) = 3 + 0 + 4 = 7

A positive integer 𝑥 is a self number if there is no positive integer 𝑦 where 𝑦 + 𝑆𝑂𝐷(𝑦) = 𝑥.

20 is a self number, but 21 is not a self number (15 + 𝑆𝑂𝐷(15) = 15 + 1 + 5 = 21).

Given an upper bound N, find the largest self number that is less than or equal to N.

Input: The first line of input has an integer T (1 ≤ T ≤ 50), the number of test cases. Each of the

next T lines has a single integer N (1 ≤ N ≤ 5,000,000).

Output: For each test case, output the largest self number that is less than or equal to N.

Sample Input:
5

22

9

2

60

1234567

Sample Output:
Case #1: 20

Case #2: 9

Case #3: 1

Case #4: 53

Case #5: 1234557

Hint: The first few self numbers are 1, 3, 5, 7, 9, 20, 31, 42, and 53.

UIL – Computer Science Programming Packet – Invitational A - 2021

12

9. Megan

 Program Name: Megan.java Input File: megan.dat

Megan has just received multiple messages from alien lifeforms from many different planets!

The problem she realizes is that even though these planets use a 26-letter alphabet, each of the

planets use a different ordering of letters.

So, contrary to the English alphabet of: abcdefghijklmnopqrstuvwxyz, an example ordering used

by one of the planets is: qpotivcaefndxujwzlgrysbhkm. The aliens have sent Megan each of their

own respective alphabet orderings. They have also sent lists of words that they need help in

determining if the lists are in alphabetical order according to each of their own alphabets. Can

you help Megan write a program that will determine this for her?

Input: Input begins with an integer N (1 <= N <= 50), the number of different test cases. The

following line contains the alphabetic ordering for that given test case given in lower case letters

only. The next line has a list of words separated by commas. All words will consist of lower-case

letters only. The number of words will be greater than 0 and less than 100. A blank line will be

present to separate test cases.

Output: For each test case, you are to output “Word List # is sorted.” if the list is correctly

sorted with respect to the given alphabet, or “Word List # is not sorted.” otherwise.

Sample Input:
8

qpotivcaefndxujwzlgrysbhkm

apple,banana,carrot

qpotivcaefndxujwzlgrysbhkm

carrot,apple,donut,banana

qpotivcaefndxujwzlgrysbhkm

pot,potato,potatoes

qpotivcaefndxujwzlgrysbhkm

pot,potatoes,potato

ndaxyvojzmcrufpbwklhgeistq

nick,sarah,ashley,xray,yellow,violin,open,jelly,zebra,mouse,cat

ndaxyvojzmcrufpbwklhgeistq

name,no,need

ndaxyvojzmcrufpbwklhgeistq

name,names,need,nail

abcdefghijklmnopqrstuvwxyz

apple,apples,banana,bananas,lemon,fruit

UIL – Computer Science Programming Packet – Invitational A - 2021

13

Sample Output:
Word List 1 is not sorted.

Word List 2 is sorted.

Word List 3 is sorted.

Word List 4 is not sorted.

Word List 5 is not sorted.

Word List 6 is sorted.

Word List 7 is not sorted.

Word List 8 is not sorted.

UIL – Computer Science Programming Packet – Invitational A - 2021

14

10. Oscar

 Program Name: Oscar.java Input File: oscar.dat

There is a line of ogres moving a big bucket of mud from the swamp to their house. Each ogre

carries the bucket until they encounter an ogre that is larger than they are and then hands it off to

the larger ogre. There may be several smaller ogres between the ogre that is carrying the mud

and the next larger ogre, but those ogres are skipped. If the ogre carrying the bucket comes upon

another ogre of the same size, he should pass the bucket. The ogres are not always in the same

order and sometimes there are not the same number of ogres available to help out. The first ogre

always starts with the bucket of mud. Oscar the ogre oversees keeping track of which ogres

carried the mud on each trip. Oscar needs a program to keep track of who carried the mud on

each trip.

Input: There will be a single integer N on the first line that represents the number of mud

hauling trips that were made. There will then be N lines of names and values separated by a

space. The values represent the relative size of each ogre in the line. The lines can each have a

different number of ogres.

Output: For each mud trip print which ogres carried the bucket in the order that they carried it.

Sample input: (Note that the third line will all be on the same line in the data file.)
3

Zagut 5 Okork 3 Nogark 6 Zazir 1 Tazir 2 Domuzig 7 Dougurk 3

Treerut 8 Elezor 3 Wazagark 5

Takig 3 Bugrok 2 Krozir 1 Kigruk 4 Wazag 5 Ezigurk 6 Kabekurg 8

Koagurk 1 Uozig 7 Blirag 3

Sample output:
Zagut Nogark Domuzig

Treerut

Takig Kigruk Wazag Ezigurk Kabekurg

UIL – Computer Science Programming Packet – Invitational A - 2021

15

11. Rebecca

 Program Name: Rebecca.java Input File: rebecca.dat

Rebecca is a fan of the Dutch art movement De Stijl. She especially likes the works of artist Piet

Mondrian.

Piet Mondrian, Composition with Red, Blue, and Yellow, 1930.

Many of Mondrian's best known works are made of straight lines and solid colors like the one

above. They typically use few colors. Inspired by this art, Rebecca set out to make her own

paintings. Here is one of Rebecca's paintings:

Rebecca's canvas is made of R rows, each with C cells. Each cell in her painting has a color,

represented by a positive integer. A rectangle is defined using two cells: an upper left cell (r1,

c1) and a lower right cell (r2, c2). A rectangle is monochromatic if every cell (r, c) where r1 ≤ r ≤

r2 and c1 ≤ c ≤ c2 has the same color. For example, using 1-based indexing for the rows and

columns, (1, 1) to (2, 2) is a monochromatic rectangle (all cells have color 1), but (2, 2) to (2, 3)

is not (there is a cell of color 1 and a cell of color 2).

UIL – Computer Science Programming Packet – Invitational A - 2021

16

Given the layout of Rebecca's painting, find the number of monochromatic rectangles in the

painting.

Input: The first line of input has an integer T (1 ≤ T ≤ 20), the number of test cases. Each test

case begins with two positive integers R and C, the number of rows and columns in Rebecca's

painting. The next R lines each have C space separated integers, the color of each cell of her

painting.

The sum of R * C over all test cases will not exceed 6,000,000. Each color in the painting is a

positive integer between 1 and 1,000,000,000, both bounds inclusive.

Output: For each test case, output the number of monochromatic rectangles in the grid,

formatted with the case number as in the samples.

Sample Input:
2

3 4

1 1 2 2

1 1 2 2

3 3 3 3

4 3

8 7 8

5 3 1

2 4 6

6 2 1

Sample Output:
Case #1: 28

Case #2: 12

Sample Explanation: In the first sample, there are 9 rectangles of color 1, 9 rectangles of color

2, and 10 rectangles of color 3, for a total of 28 monochromatic rectangles.

In the second sample, all monochromatic rectangles are 1x1 squares.

UIL – Computer Science Programming Packet – Invitational A - 2021

17

12. William

 Program Name: William.java Input File: william.dat

William is the chairman of the Firethorn High School French Club’s recruitment committee. He

has been presented with an unsorted list of students that have indicated on a survey that they

might like to join the French Club. To make it easier to keep track of who he has contacted and

who he has not, William needs an alphabetized list. Since you and your teammates form the

French Club’s technology committee, the job has fallen to you. Write a program to alphabetize

the list of potential new members.

Input: A list of student’s names listed first name then last name. There will be an unknown

number of names each listed on one line where the first and last names are separated by exactly

one space. As luck would have it, there are no duplicate first or last names in the list.

Output: A list of student’s names listed first name then last name with exactly one space in

between. The list should be alphabetized based on the last name.

Sample input:
Carolyn Blair

Jared Hopkins

Maude Almond

Shamas Woodley

Wilfred Blaese

Miya Ridley

Salahuddin Alexander

Lea Richardson

Safwan Campos

Manal Mathews

Sample output:
Salahuddin Alexander

Maude Almond

Wilfred Blaese

Carolyn Blair

Safwan Campos

Jared Hopkins

Manal Mathews

Lea Richardson

Miya Ridley

Shamas Woodley

