UIL — Computer Science Programming Packet — District - 2022
Uil
UIL Computer Science Competition

District 2022

JUDGES PACKET - CONFIDENTIAL

l. Instructions
1. The attached printouts of the judge test data are provided for the reference of the
contest director and programming judges. Additional copies may be made if
needed for this purpose.

2. This packet must remain CONFIDENTIAL. Additional copies may be made and
returned to schools when other confidential contest material is returned.

II. Table of Contents

Number | Name
Problem 1 | Adrian
Problem 2 | Arusha
Problem 3 | Catherine
Problem 4 | Diane
Problem 5 | Facundo
Problem 6 | Haru
Problem 7 | Kristina
Problem 8 | Lavanya
Problem 9 | Manos
Problem 10 | Michaela
Problem 11 | Pankaj
Problem 12 [Shirley

UIL — Computer Science Programming Packet — District - 2022

Problem #1
60 Points

1. Adrian

Program Name: Adrian.java Input File: adrian.dat
Test Input File: None

Test Output to Screen:
JAVA
PYTHON
SWIFT

ADA

C

C++

COBOL
FORTRAN
ALGOL
BASIC
DELPHI
PASCAL

PL1
JAVASCRIPT

UIL — Computer Science Programming Packet — District - 2022

Problem #2
60 Points

2. Arusha

Program Name: Arusha.java Input File: arusha.dat

Test Input File: (indentations are continuations of long lines)

10

ABCDE L

ABCDE R

AB LLL

sswzibsegmrvplkagmlbnzjfmdnbzvivn
RLLLRLLRRLRRRLLRRLLRRLRLLLRLRLLLLLRLLLRRRRLLLLLRRLRLLLRLLRRLRLLRRLRLR

iogsfktdljctzzihbgjaxllsqd LLRLRLLLRLLLLLLRRLRRRLRRLLLR

zptnfidjogdpjyrdgrnpghufinamgugtbdzmhknutcriagwuvxnjdyjjikcgpgwdirgpwe
LLLLRLRRLRRLLLRRLLRLLLLLRRRRLLLLRRLLRRLRLRLRRLLLLLRRRLRLRLLLLLRLRRRLLRRRLLLRR
LLLLRRLRRRLRRLRR

krblmjodj RLRLLRRRRLLRLLRLLR

dzyippbxinffobwhebdxybawewyyui
RLLLRLRRLRLRRRLLRLLRLRLLRLLRRRRLLRLRRRRLRLLRRRLLLLRLLRLLRRLRLLRLRLRLRRRRLLLLR
RLR

hopvxjplhhhiw
LLRLRLRRLRRRRRLRRRRLLRLLRLLLLLLLRLLRRRRLLLRLLLLRLLRRLLLRLLRRRRLLLLLLLRRLRRLRR
LLRLL

tvzdiofnvfsolpfxylgiebisbsggtyngnhsrygrmuhmvgkukfrypibgexzjkgtvztnwzumplxzdnohmp
LRLRRLRRLLLRLRLRRRLRLLRLRLRRRRLRRLLRRLRRLRLRLLRRLLRLRLLLLRRRLRRRLLRRRLRRLLLLR
RRRRLRRRRRRRRLRLRRL

Test Output to Screen:

BCDEA

EABCD

BA

mrvplkgmlbnzjfmdnbzvivnsswzibseg

tdljctzzihbgjaxllsgdiogsfk
jogdpjyrdgrnpghufinamgugtbdzmhknutcriagwuvxnjdyjjikcgpgwdirgpwezptnfid
krblmjodj

dzyippbxinffobwhebdxybawewyyui

hiwhopvxjplhh
tnwzumplxzdnohmptvzdiofnvfsolpfxylgiebisbsggtyngnhsrygrmuhmvgkukfrypibgexzjkgtvz

UIL — Computer Science Programming Packet — District - 2022

Problem #3
60 Points

3. Catherine

Program Name: Catherine.java Input File: catherine.dat

Test Input File:
8

logic texas
purse purse
china cloth
shoes ascot
abcde edcba
chair wreck
bugle bagel
steam teams

Test Output to Screen:

* Kk ok Kk Kk

PURSE
C***h
*S*O*
edCba
*r*c*
B*Gel
teams

UIL — Computer Science Programming Packet — District - 2022

Problem #4
60 Points

Program Name: Diane.java

Test Input File:
10

12 and 20

30 and 20

22 and 27

1/7 and 2/5

0 and -21

5 1/3 and 7 5/7

10 1/4 and -11 2/3
-1/2 and -3/4

2/3 and -2/3

20 and -1/11

Test Output to Screen:
32

50

49

19/35
=21

13 1/21
-1 5/12
-1 1/4

0

19 10/11

4. Diane

Input File: diane.dat

UIL — Computer Science Programming Packet — District - 2022

Problem #5
60 Points

5. Facundo

Program Name: Facundo.java Input File: facundo.dat

Test Input File:
10

ABCDEFG O
ABCDEFG 1
ABCDEFG 2
ABCDEFG 3
ABCDEFGHIJ
ABCDEFGHIJ
ABCDEFGHIJ
ABCDEFGHIJ 3
ABCDEFGHIJKLMNOPQRSTUVWXYZ 10
ABCDE 50

N P O

Test Output to Screen:
ABCDEFG

AEBFCGD

ACEGBDF

ABCDEFG
ABCDEFGHIJ
FAGBHCIDJE
CFIADGJBEH
GCJFBIEAHD
MZLYKXJWIVHUGTFSERDQCPBOAN
AEDCB

UIL — Computer Science Programming Packet — District - 2022

Problem #6
60 Points

6. Haru
Program Name: Haru.java Input File: haru.dat

Test Input File: (indentations are continuations of long lines)
10

[y

3 RRR
4 DDD

4 DDD
3 RRR
0
0

O WU WkE ONRFONEFONEREOHR U WWOo O
=
=}
=

ro.orooonn.oonrooroL.Lr,L, L., L. LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLL

100 100
RR
RRRRRRRRRR

100

00
DD
DDDDDDDDDD

100 100
[91V10101V]V1810)VIU101VIVA01U)UAU101VIVIC1UVACIC1UAVICIVIVACICIUAUICIV)VIVACIUACICI0AVIVAUIVIVACICAVICICIVIVIVICIUACICICAVIVAUIVIVACICAVICICIVIVACICIUACICAVIVACIUIVACICIVIVICINIY)
Uuuuuuuuuu

3

0 1 DDD

0 0 RUL

Test Output to Screen:
HEAD ON

P2 WIN

HEAD ON
DOUBLE SPIKE
DRAW

P2 WIN

Pl WIN
DOUBLE SPIKE
DOUBLE SPIKE
P2 WIN

UIL — Computer Science Programming Packet — District - 2022

Problem #7
60 Points

7. Kristina

Program Name: Kristina.java Input File: kristina.dat

Test Input File: (lines that start with = are continuation of previous line)

25

PRE + - * 7 5 - 9 6 -5

POST 7 5 * 9 6 - - -5 +

POST 2 8 3 42 * / + -

PRE - 2 + 8 / 3 * 4 2

POST -39 9 + -35 =44 * -100 / -

PRE + -97 - * 47 29 / ~ 3 5 100

POST 2 8 * 34 2 / + -

PRE + - * = 7 5 9 6 -5

POST 19 -4 100 10 / * 4 3 » = *

POST 100 5 3 ~ =12 -3 / * +

PRE / ~ + 21 -17 3 * - -2 -9 -3

PRE - * 27 41 + / * 28 -20 + -99 47 * 15 29

POST 27 41 * 28 -20 * =99 47 + / 15 29 * + -

POST 83 -55 + 65 21 - 100 7 / =32 =76 - * 11 45 - * / +

PRE + + 83 -55 / - 65 21 * / 100 7 * - =32 =76 - 11 45

POST 18 67 -41 93 -58 28 21 -92 0 67 -55 -5 88 =78 -59 -67 21 44 19 0 44 22 -37
2> 74 -36 + + + + + + + + + ++ 4+ A+ A+ A+ A+ AF A+ +++ + ++

PRE / * / * / * [/ * [* [/ * / *x / *x / x / x [/ *x [/ % 654 -1 -3 7 37 70 24 80 66
2> -13 -53 62 -40 84 -89 -89 78 101 -89 53 -55 -87 -95 93

POST 2 10 ~4 2 ~+35~53 "+ -73"63"-85"9 3" -+ +*

PRE * -+~ 210"~42+"*357*53+-"73"63-"85"93

POST 1 2 * 3 4 * x5 6 * *x 7 8 * * 9 10 * *

PRE * * x * *x 10 9 x 8 7 * 65 * 4 3 * 21

POST 2 30 ~ 16 2 ~/ 43 ~*85 "~ /322 "*210 "~/

PRE - * 123 -456 / + - =789 234 + 567 -890 - + -345 678 / 901 77

POST 10 11 + 12 + 13 + 14 + 15 + 15 -30 + + -28 14 + + 13 -26 + + -24 12 + + 11

> -22 + + -10 +
PRE / * * / * -67 -91 * 46 82 + * 44 39 * 71 80 * / * 39 78 * 61 25 * * -16 33 /
> -98 48 * / * =79 -80 * 10 25 / * -82 -96 * =71 -7

Test Output to Screen:

27 28

27 28

-6 78

-6 -33

-15 21615552
1264 21615552
11 3628800
7 3628800
-197¢6 8192

600 -56084
-3 0

662 20827
662

UIL — Computer Science Programming Packet — District - 2022

Problem #8
60 Points

8. Lavanya

Program Name: Lavanya.java Input File: lavanya.dat

Test Input File:
18

2

3

4

5

9

123456
654321
121212121
1000000001
11

13

13

97531
1999999999
2000000000
2147483645
2147483646
2147483647

Test Output to Screen:

2 =2

3 =23

4 =2 * 2

5=25

9 =3 *3

123456 = 2 * 2 * 2 x 2 * 2 *x 2 * 3 * 643
654321 = 3 * 218107

121212121 = 83 * 577 * 2531

1000000001 = 7 * 11 * 13 * 19 * 52579

11 = 11
13 =13
13 = 13

97531 = 7 * 13933

1999999999 = 31 * 64516129

2000000000 = 2 * 2 *x 2 *x 2 * 2 % 2 % 2 % 2 % 2 *x 2 x5 x5 x5 x5 *x 5 *x 5 * 5 *
5 * 5

2147483645 = 5 * 19 * 22605091

2147483646 = 2 * 3 *x 3 * 7 * 11 * 31 * 151 * 331

2147483647 = 2147483647

UIL — Computer Science Programming Packet — District - 2022

Problem #9
60 Points

Program Name: Manos.java

Test Input File:
10

01

11

12

50 50
50 7
100 100
100 99
99 100
99 99
100 O

Test Output to Screen:
Pl
P2
Pl
P2
P1
P2
P1
=i
P2
Pl

9. Manos

10

Input File: manos.dat

UIL — Computer Science Programming Packet — District - 2022

Problem #10
60 Points

10. Michaela

Program Name: Michaela.java Input File: michaela.dat

Test Input File: (indentations are continuations of long lines)

11

a

ab

ab

abcdefghijklmnopgrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopgrstuvwzx

ABCDEFGHIJKLMNOPQRSTUVIXX

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

to all the judges out there grading this please know i did not make this output
hard to grade on purpose it just came out this way

please forgive me

if you are not using an autograder i1 am really really sorry

y z
Y Z

Test Output To Screen: (indentations are continuations of long lines)

Message #1: —-..... -

Message #2: —-..... - ...

Message #3: -..... - -

Message #4: —-..... e e e T T T e e T T T T T T e T T mi T ..
Message #5: —-..... T T T e Tl T T m i T m it —L— e —
Message #6: —-..... - = ... T T T — e e T — e —
Message #7: —-..... - - ... - - .. - -— - ... - - - - -.-
Message #8: -.-.- - .- - - — . s —ama— = - - -— - .-
Message #9: -.-.- - = - .. - - - .- - —.— .- - .-

11

Message #10:

Message #11:

UIL — Computer Science Programming Packet — District - 2022

12

UIL — Computer Science Programming Packet — District - 2022

Problem #11
60 Points

11. Pankaj

Program Name: Pankaj.java Input File: pankaj.dat

Test Input File: (indentations are continuations of long lines)

11

A,B,C,D,E,F,G,H,I,J,K,L

A<->E, A<->F, A<->G, A<->H, A<->I, A<->J, A<->K, A<->L, B<->E, B<->F, B<->G, B<->H, B<-
>I,B<->J,B<->K,B<->L,C<->E, C<->F, C<->G, C<->H, C<->I,C<->J, C<->K, C<->L, D<-
>E, D<->F, D<->G, D<->H, D<->I,D<->J, D<->K, D<->L

A,B,C,D,E,F,G,H,I,J,K,L

A<->E,A<->F,A<->G,A<->H,A<->I,A<->J,A<->K,A<->L,B<->E, B<->F,B<->G, B<->H, B<-
>I,B<->J,B<->K,B<->L,C<->E,C<->F,C<->G,C<->H,C<->I,C<->J,C<->K,C<->L,D<~
>E, D<->F, D<->G, D<->H, D<->I,D<->J,D<->K, D<->L, G<->H

A,B,C,D,E,F,G,H

A<->B, A<->D,A<->E,B<->F,B<->C, C<->G,C<->D, D<->H, H<->E, E<->F, F<->G

A,B,C,D,E,F,G,H

A<->B,A<->D, A<->E, C<->F,B<->C,C<->G,C<->D,D<->H, H<->E, E<->F, F<->G

A,B,C,D,E,F,G

A<->F,B<->F,C<->E,C<->G,D<->G

A,B,C,D,E,F,G

A<->F,B<->F,C<->E, C<->G, D<->G, A<->F

A,B,C,D,E,F,G

A<->F,B<->F,C<->E, C<->G, D<->G, A<->D

A,B,C,D,E,F,G

A<->F,B<->F, C<->E, C<->G, D<->G, A<->D, B<->G

Alex, Pete,Bob, Quinn, Cade, Reid, Dave

Alex<->Pete,Alex<->Quinn,Alex<->Reid, Bob<->Pete, Bob<->Quinn, Bob<->Reid, Cade<-
>Pete, Cade<->Quinn, Cade<->Reid, Dave<->Pete, Dave<->Quinn, Dave<->Reid

Alex, Pete,Bob,Quinn, Cade,Reid, Dave

Alex<->Pete,Alex<->Quinn,Alex<->Reid, Bob<->Pete, Bob<->Quinn, Bob<->Reid, Cade<-
>Pete, Cade<->Quinn, Cade<->Reid, Dave<->Pete, Dave<->Quinn, Dave<->Reid, Alex<-
>Dave

Alex, Pete,Bob,Quinn, Cade, Reid, Dave

Alex<->Dave

Test Output to Screen:

Test case 1: possible
Test case 2: impossible
Test case 3: possible
Test case 4: impossible
Test case 5: possible
Test case 6: possible
Test case 7: possible
Test case 8: impossible
Test case 9: possible
Test case 10: impossible
Test case 11: possible

13

Problem #12

60 Points

UIL — Computer Science Programming Packet — District - 2022

12. Shirley

Program Name: Shirley.java

Test Input File:
9

6 7

1859 739
1069 1789
1399 1780
0 0
1750 1523
1926 1342
35

1865 201
164 1933
1828 1624
2 2

1234 0

0 1999
10 10

973 739
1356 853
1772 188
1460 1186
401 1433
1015 164
1786 1264
1648 94
743 420
1537 1961
10 10
858
1691
487
1153
1284
1128
1542
561
1423
822
10 10
1408 1042
287 439
1297 325
1308 844
1428 1091
1769 1736
1986 1531
275 1077
487 543
1770 1690
15 15

47 1375
1913 851
555 1882
469 1919
33 1223

0
164
56
973
1714
1342

1164
971
1654

339

1345
688

1221
437

1114
1968
1362
1807
1153

1540

1569
1178
777
250
1195
1141

1264

1962
1112
1905
1106
791

1319
1441
1598
1597
822

382
1760
1102
791
712

1101
678

1155
388
1397

1265
1030
1136

1187

860
220
839
227
611
163
893
196

1414

250
176
233
237
167

250

1444
906
1800
1148
268
1277
1545
622
327
1068

23
100
1063
1408
764

1569
568
183
1157
670
689

248
166
1693

1043

469
182
1811
239
1388
182
329

1966

249
1686
1175
250
1491
249

1288

1249
1818
804
295
1899
606
646
844
1137
379

1719
1880
644
1457
608

312
1282
234

56
1688
841
1843
462
962
1635
674
1209
1007

250

249
660
1867
1644
1865
249

1837

458
1161
1291
1286
966
554
637
316
1807
250

1051
1527
1359
1153
976

635
1633
1835
490
1256
965

734
1625
706
1375
85
1764
539
396
896
1401

1353

183
134
156
249

1263

1137
979

1110
1793
1901
350

1038
1950
253

1027

1534
278

1127
1847
1851

369
925
208
1005
431
1376
1821
1067
1756
734

418

1665
250
824
1278
833
1666

1440

685
615
547
788
546
251
1675
1537
1197
1032

783
1295
261
224
1516

468
1792
1332
1677
309
498
475
618
1901
1392

O OO OO OO oo
()]
[

()]
S

1918
365
250
888
263
411
317
531
1327
1803

159
1793
486
47
1528

213
1698
1861
1301
50
190
1151
440
1308
737

1912
931
1245
250
301
805
1814
318
801
418

702
447
923
1043
1518
1928
838
256
1972
801

654
1581
1398
889
1347

14

Input File: shirley.dat

13 737
1022 1937
500 217
1370 394
1347 1197

516
219
1939
583
1297

156
1934
1917
353
178

1051
477
743
1506
1037

302 739 1468
762 1651 229
912 1702 1821
762 2000 219
1095 236 1641
384 4 96
1871 941 348
586 1164 1445
39 396 818
465 1604 953
10 9

1905 801 O
1046 1004 O

0 0 1209
335 1233 0
812 0 1488
398 0 0
908 1336 691
0 0 1997
1686 1507 O
456 1382 0
75

1664 0 1525
0 1691 0
1864 0 0

0 0 2000
1015 0 0

0 1999 0
565 1015 0

UIL — Computer Science Programming Packet — District - 2022

199
1767
524
1004
1164
801
1013
1576
1824
100

1132

698
1441
1732

1509
1234
208

2000
1259

Test Output to Screen:

Case #1:
16026 31.0
12324 28.6
8635 14.3
Case #2:
14298 66.7
NONE

NONE

Case #3:
NONE

NONE

NONE

Case #4:
53239 49.0
36371 32.0
NONE

AAAAAAAAAAAA

504
445
33
184
1395
1478
1081
1343
629
325

1414
1488
1488
1441
1390
365

1505
248

1140

1841

1312

723

327
671
1468
128
54
725
835
744
1085
681

1220

738
1727
703

1468
0
920

386
1875
1293
1006
829
1778
172
1769
1460
970

537

529

lel
1656
0

0

1488
351
967
984
1595
253
1931
644
1612
718

735
297

462
807
791
1480
1834

754 1594 860 159
123 664 1005 1445
859 1056 1234 1985
1698 1822 1529 971
1277 948 171 1319
775 320 1672 1682
162 730 1486 1981
1493 794 1336 620
279 1425 569 733
1212 316 835 356
649
395
1499
388
1638
0
0
0
756
1495
Case #5:
38668 36.0
10638 8.0
6516 6.0
Case #6:
103706 100.0
NONE
NONE
Case #7:
211509 84.0
NONE
NONE
Case #8:
15228 14.4
11958 12.2
10749 10.0
Case #9:
3982 8.6
3579 8.6
NONE

15

AAAAAAAAAAAN

1964
1076
642
1037
1870
1878
25

1863
5

910
1121
229
1213
954
830
730
1559
1322
963

133

65
377
1544
557
1028
1430
1517
1774

UIL — Computer Science Programming Packet — District - 2022

Uil
Computer Science Competition
District 2022

Programming Problem Set

|. General Notes
1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.
2. All problems have a value of 60 points.
3. There is no extraneous input. All input is exactly as specified in the problem. Unless
specified by the problem, integer inputs will not have leading zeros. Unless otherwise

specified, your program should read to the end of file.

4. Your program should not print extraneous output. Follow the form exactly as given in the
problem.

5. A penalty of 5 points will be assessed each time that an incorrect solution is submitted.
This penalty will only be assessed if a solution is ultimately judged as correct.

II. Names of Problems

Number | Name
Problem 1 | Adrian
Problem 2 | Arusha
Problem 3 | Catherine
Problem 4 | Diane
Problem 5 | Facundo
Problem 6 | Haru
Problem 7 | Kristina
Problem 8 | Lavanya
Problem 9 | Manos
Problem 10 | Michaela
Problem 11 | Pankaj
Problem 12 | Shirley

UIL — Computer Science Programming Packet — District - 2022

1. Adrian

Program Name: Adrian.java Input File: None

Adrian is always amused when he sees the classic “Hello World” program! He wonders how many different programming
languages have used that program as the first program for students learning the language. From his research he has come up
with an initial list of programming languages as shown below. Believe it or not, he even found a COBOL example!

Input: None
Output: Display the following exactly as shown below.
Sample input: None

Sample output:
JAVA
PYTHON
SWIFT

ADA

C

C++

COBOL
FORTRAN
ALGOL
BASIC
DELPHI
PASCAL

PL1
JAVASCRIPT

UIL — Computer Science Programming Packet — District - 2022

2. Arusha

Program Name: Arusha.java Input File: arusha.dat

Given a string s, the right rotation of s is the last letter of s, followed by every other letter of s. The left rotation is the first letter
of s, preceded by every other letter of s.

For example, with the string “ABCDE”, the right rotation is “EABCD?”, and the left rotation is “BCDEA”.

Given a starting string and a sequence of rotations, Arusha wants to know the resulting string. Write a program to help Arusha
calculate this.

Input:

The first line of input will contain a single integer T, the number of test cases to follow (1 <=T <= 10)

Each test case will consist of two strings S and I, denoting the string to manipulate, and the instruction sequence.
1<=|S|<=100

1<=]I|<=100

I will consist of only characters ‘L’ and ‘R’, denoting a left and right rotation instruction.

Output:
For each test case on its own line, output the resultant string after completing all rotations.

Sample input:
3

ABCDE L
ABCDE R
AB LLL

Sample output:
BCDEA
EABCD

BA

UIL — Computer Science Programming Packet — District - 2022

3. Catherine

Program Name: Catherine.java Input File: catherine.dat

Catherine, like the rest of the word, is intrigued by the game of Wordle. She needs a program that will allow her to compare a
target word and an attempted guess. Write a program that inputs first, the target word, then the guess. Compare the two words
and provide the indicated output.

Note: Each word will be a 5-letter word consisting of lower-case letters only. For this program, neither word will contain any
repeated letters. That is each word will contain five unique lower-case letters.

The program should compare the two words letter-by-letter.
(1) Ifthe letter in position N of the guess matches the letter in position N of the target, the upper-case form of the letter will
be printed in position N of the output.
(2) If the letter in position N of the guess is not anywhere in the target, an asterisk will be printed in position N of the
output.
(3) Ifthe letter in position N of the guess is in the target, but not in position N, the lower-case form of that letter in guess
will be printed in position N of the output.

Input: The first line consists of a number N, representing the number of lines of data to follow. N will be in the range of [1,50].
The next N lines of data consist of two five-character strings each consisting only of lower-case letters. One space will separate
those words.

Output: Each output will be five characters consisting of uppercase letters, lowercase letters, and asterisks.

Sample input:
5

logic texas
purse purse
china cloth
shore ascot
abcde edcba

Sample output:
* kK kK
PURSE
C***h
*S*o*

edCba

UIL — Computer Science Programming Packet — District - 2022

4. Diane

Program Name: Diane.java Input File: diane.dat
Diane simply wants to add two values that may be integers, proper fractions, or mixed numbers.

Write a program to take two values and find the sum in simplified format.

Input: The first line consists of a number N, representing the number of lines of data to follow. N will be in the range of [1,50].
The next N lines of data consist of two numeric values A and B, separated by the lower-case word "and". One space separates
value A from "and". Another space separates "and" from value B.

If A or B are proper fractions, the format will be numerator, slash (*/"), then denominator with no spaces.
If A or B are mixed numbers, the format will be integer followed by one space then the proper fraction as mentioned above.

If a proper fraction is negative, the negative will be in the numerator. If a mixed number is negative, the negative will be
attached to the integer.

All values will be in the range [-1000,1000].

Output: Each output will be either an integer, a fraction, or a mixed number representing the sum of the two values.

If the sum is an integer, it will be written in integer form.

If the sum is a proper fraction, it shall be written in lowest terms in numerator/denominator form with no spaces separating the
numerator from the "/*, and no spaces separating the"/" from the denominator.

Output should be simplified and in lowest terms.

Sample input:

-

12 and 20

30 and 20

22 and 27

1/7 and 2/5

0 and -21

5 1/3 and 7 5/7

10 1/4 and -11 2/3

Sample output:
32

50

49
19/35
-21

13 1/21
-1 5/12

UIL — Computer Science Programming Packet — District - 2022

5. Facundo

Program Name: Facundo.java Input File: facundo.dat
Facundo needs a program that will emulate what in his eyes is a perfect shuffle. Your job is to create this program.
The deck of cards will be represented by a string of uppercase letters. The first letter in the string is the top of the deck.

First, the deck will be split into an upper deck and a lower deck. The upper deck will consist of the half of the deck containing
the top card. The top card will be the top card of the upper deck. The lower deck will consist of the rest of the cards with the
bottom card of the original deck being the bottom card on the lower deck.

If there is an even number of cards, the upper and lower decks will have the same number of cards. If there is an odd number of
cards, the upper deck will have one more card than the lower deck.

Then, the decks will be shuffled. The bottom card of the upper deck always goes first to the bottom position in the shuffled deck.
The bottom card of the lower deck will go on top of that card. The upper and lower decks continue to alternate being placed on
the stack until there are no more cards.

This process is executed as many times as is indicated by the data. For ABCDEFG 3, the cards are shuffled three times.

Input: The first line consists of a number N, representing the number of lines of data to follow. N will be in the range of [1,50].
The next N lines of data will consist of a string of uppercase letters followed by an integer in the range of [0,100]. The string will
be of length in the range of [2,26].

Output: Each output will be a string of uppercase letters.
Sample input:

8

ABCDEFG 0
ABCDEFG 1
ABCDEFG 2
ABCDEFG 3
ABCDEFGHIJ 0
ABCDEFGHIJ 1
ABCDEFGHIJ 2
ABCDEFGHIJ 3

Sample output:
ABCDEFG
AEBFCGD
ACEGBDF
ABCDEFG
ABCDEFGHIJ
FAGBHCIDJE
CFIADGJBEH
GCJFBIEAHD

UIL — Computer Science Programming Packet — District - 2022

6. Haru

Program Name: Haru.java Input File: haru.dat

Haru and his friend are playing a game called Spikebikes. In this game, each player programs their bike with a set of directions.
The bikes will then follow these movement instructions, leaving spikes behind them.

Bikes will crash if they run into a spike or another bike. Given each bike’s starting location and instruction set, determine the
outcome of the game!

Input:

The first line of input will consist of a single integer T (1 <=T <= 10), the number of test cases to follow.

Each test case will begin with a single integer N, denoting the length of the instruction sequences.

The next two lines will be of the format X Y S and will denote the starting location and instruction sequences of players one and
two, respectively. X and Y will be integers (0 <= X, Y <= 100) and S will be a string of length N containing characters {U, D, L,
R} denoting movement in the {+Y, -Y, -X, +X} directions, respectively.

Coordinates are a standard X-Y system, and locations less than zero and greater than 100 contain spikes and will crash a bike.
No test case will contain a head on collision at a spike location.

Output:
For each test case, report one of the following outcomes:
1) DRAW (if no bike crashes)
2) DOUBLE SPIKE (if both bikes hit a spike at the same time)
3) HEAD ON (if the bikes crash into each other)
4) P1 WIN (if player 2 runs into a spike first)
5) P2 WIN (if player 1 runs into a spike first)

Sample input:

3 RRR
4 DDD

07U
1L

0 UR
1 DL

0 UU
1 UU

P OMNMNRFRFONMNRPFEFOR U WWwo U O

Sample output:
HEAD ON

P2 WIN

HEAD ON
DOUBLE SPIKE
DRAW

UIL — Computer Science Programming Packet — District - 2022

7. Kristina
Program Name: Kristina.java Input File: kristina.dat

Kristina has been studying prefix and postfix notation for arithmetic expressions and has asked you to create a combination
prefix/postfix calculator program that will check her manual evaluation of expressions of those forms.

Prefix notation places operators before their operands and operations have to be delayed until two operands are available.
Consider the prefix example: + - * 7 5 - 9 6 -5

* 75 is7*5=35

- 96is9-6=3

35 3 is35—-3=32
+ 32 -5 is32+-5=27

Postfix places operators after their operands which means the needed operands are available as soon as an operator is
encountered. Consider the postfix example: 7 5 * 9 6 - - -5 +

75 % is7*5=35
96 —-i1s9-6=3

35 3 - is35-3=32
32 -5 + is32+-5=27

Kristina wants to work with only integers and wants to use ~ as an exponent operator. For example, 2 ~ 5 is 32.
Can you create the program for Kristina?

Input: First line of data file contains a positive integer T, the number of test cases that follow with 1 <T <25. The following T
lines will start with either “PRE” for a prefix expression or “POST” for a postfix expression. Those will be followed by a single
space and a properly formed expression of the indicated notation. The combination of operators (*, *, /, +, and —) and integers,
N, will be separated by single spaces with =100 <N < 100. However, exponent and other operations are guaranteed to not result
in values that exceed a standard Java integer. Expressions are also guaranteed to not result in division by 0. Length of lines will
not exceed 200 characters.

Output: For each test case, display the resulting integer value.

Sample input:

6

PRE + - * 75 - 9 6 -5

POST 7 5 * 9 6 - - -5 +

POST 2 8 34 2 * / + -

PRE - 2 + 8 / 3 * 4 2

POST -39 9 + -35 -44 * -100 / -

PRE + + -97 - * 47 29 / ~ 3 5 100 ~ 2 10

Sample output:
27

27

-6

-6

-15

2288

UIL — Computer Science Programming Packet — District - 2022

8. Lavanya
Program Name: Lavanya.java Input File: lavanya.dat

Lavanya just learned how to take the prime factorization of a number in her Algebra class. Recall, prime factorization is a way of
expressing a number as a product of its prime factors. Remember, a prime number is a number that is divisible by 1 and itself
only. For example, the prime factorization of 72 is: 2 * 2 * 2 * 3 * 3. A visual representation of this is:

72

In order to double check her homework problems, Lavanya has decided to write a program to tell her the prime factorization of
any whole number. Can you help her write such a program?

Input: Input will begin with an integer T, the number of test cases. T will be in the range of [1,50]. The following T lines will
each contain a single integer I. | will be in the range of [2,2147483647]

Output: For each integer I, you are to output: “I = primefactorl * primefactor2 * .. * primefactorN”.
There is one space between all numbers and operators. NOTE: in the output format, the prime factors are in ascending order, ie,
smallest to largest. Your output must match this ascending order.

Sample input:
10
72
13
23
100
512
27
28
1000
1001
42

Sample output:

72 =2 * 2 * 2 * 3 *3
13 = 13
23 = 23
100 = 2
512 = 2
27 =
28 =
1000
1001
42 =

N w

N

UIL — Computer Science Programming Packet — District - 2022

9. Manos
Program Name: Manos.java Input File: manos.dat

Manos is playing a 2-player game called Two Towers. In this game, there are two stacks of blocks. During each turn, a player
can take as many blocks as they wish from a single stack but must take at least one. The player who removes the last block wins
the game! Given the number of blocks in each stack and assuming each player plays optimally, determine which player will win.

Input:

The first line of input will consist of a single integer T, the number of test cases to follow. (1 <= T <= 10)

The next T lines will be of the form A B, denoting the height of the towers for each test case. (0 <= A, B <= 100)
There will be at least one block.

Output:
For each test case on a separate line, print P1 if the first player to go will win, and P2 if the second player will win.

Sample input:

== oW
N P

Sample output:
Pl
P2
Pl

10

UIL — Computer Science Programming Packet — District - 2022

10. Michaela

Program Name: Michaela.java Input File: michaela.dat

Michaela and her friends have created a new way to communicate with each other that utilizes a series of dots (.) and dashes (-)
to make sentences or phrases. They’ve done this so that they can communicate with each other without their nosy teacher, Miss
Dolores Umbridge, from eavesdropping on their conversations. They’ve utilized the ASCII values of the capital letters ‘A’-’Z’
as well as the ASCII value for the * ¢ (space) to create the representations as seen below. Now that their language is created, they
need your help in writing a program that can translate an English phrase or sentence into their new language. Can you help them
write such a program?

Character ASCII Value Representation Character ASCII Value Representation

(space) 32 e N 78 - ..
A 65 e - ¢ 79 - =
B 66 - - P 80 [
c 67 - - 0 81 - - -
D 68 - - R 82 - -
E 69 - -.- S 83 =
F 70 - -—. T 84 -.—.-
G 71 - -— U 85 R,
H 72 - .- v 86 .
I 73 - W 87 [
J 74 - .- X 88 _ =
K 75 - Y 89 [
L 76 - 7 90 - -
M 77 - .-

Input: Input will begin with an integer M, the number of messages to convert. M will be in range of [1,20]. The following M
lines will contain a single message made up of one or more words. Valid messages will be made up of both upper and lower case
letters and spaces only. NOTE: even though input can be lower case, all the output will match that of the table above, i.e. upper
case letters only.

Continues next page...

11

Michaela continued...

UIL — Computer Science Programming Packet — District - 2022

Output: For each message you are to output: “Message #: series_of dots_or_dashes series_of dots_or dashes ...”. There
should be a space between each series_of dots_or_dashes to denote the beginning and end of a letter. Each message is to be
output on its own, individual line.

Sample input:

6

Hello World

MORSE CODE

UiL cOmPuTeR sCiEnCe

catch the hp reference
SHE WILL NEVER FIGURE THIS OUT
the quick brown fox jumps over the lazy dog

Sample output:

Message #1:
Message #2:
Message #3:

Message #6:

12

UIL — Computer Science Programming Packet — District - 2022

11. Pankaj

Program Name: Pankaj.java Input File: pankaj.dat

Pankaj will be working for the Ultimate Intelligent Learners Summer camp in the summer of 2022. This camp is geared towards
getting the campers to make new friends within their own community and the surrounding areas. This means there is the
potential for a camper to know zero, one, or more than one of the other campers attending any given session.

The camp counselors have asked Pankaj to take a list of campers as well as a list of known relationships, and determine if the
campers can be broken into two distinct groups such that no two campers in a group have a relationship with anyone else in the
group. Remember, the focus of this camp is to get the campers to make new friends, and how can you make new friends with
people you already know?

Can you help Pankaj write a program to determine whether it is possible or impossible to break a group of campers up into two
distinct groups such that no two campers know anyone else in their group?

Input: The input will consist of an integer I, the number of test cases. I will be in the range of [1,20]. For each test case, input
will consist of two lines. Line 1 will contain the name of all the campers attending a given session. Names will be limited to first
names only, and only one word first names. It will be guaranteed that no two campers have the same exact first name. Names in
the list will be separated by a comma “,” and there will be no spaces in the list. Line 2 will consist of the known relationships
between the campers. The relationships will be given in the form: “camperl<->camper2” this means that camperl knows
camper? and camper?2 knows camperl. A relationship in this problem is always two-way, each camper will know the other

camper if a relationship is present. Relationships will be separated by a comma “,” and there will be no spaces in the list. There
will be at least one relationship present between two campers, but potentially more.

Output: For each test case, you are to output “Test Case #: possible” if the campers can be broken into two distinct groups such
that know two campers know each other or “Test Case#: impossible” if the campers can not be broken into two such groups.

Sample input:

5

Alex,Brent,Chris, Dave, Eric, Fred
Alex<->Chris,Alex<->Eric,Brent<->Dave,Brent<->Fred, Chris<->Eric, Dave<->Fred
Alex,Brent,Chris, Dave,Eric, Fred

Alex<->Chris,Alex<->Eric

Alex,Brent,Chris, Dave,Eric, Fred

Alex<->Brent,Brent<->Chris,Chris<->Dave, Dave<->Eric,Eric<->Fred, Fred<->Alex
Alex,Brent,Chris, Dave,Eric, Fred
Alex<->Brent,Alex<->Chris,Alex<->Dave,Alex<->Eric,Alex<->Fred
Alex,Brent,Chris, Dave,Eric, Fred
Alex<->Brent,Alex<->Chris,Alex<->Dave,Alex<->Eric,Alex<->Fred,Brent<->Chris

Sample output:

Test case 1: impossible
Test case possible
Test case possible

2
Test case 3: possible
4
5: impossible

Test case

13

UIL — Computer Science Programming Packet — District - 2022

12. Shirley

Program Name: Shirley.java Input File: shirley.dat

After the reposts about shortages of Christmas trees this past year, Shirley thought it might be interesting to analyze aerial data
from Christmas tree farms. Current generation mapping drones have amazing resolution capabilities and artificial intelligence
(Al) processing of photographs have become astounding!

Shirley found some data but needs help from the UIL programming team to reduce the data into something she can work with.
The data she was able to obtain consists of grids of 1-acre (4,840 square yards) square plots with an estimate of the number of
trees in that plot. A typical tree farm can vary in their density but seem to hover around 1500 trees per acre. Annual harvesting
is usually limited to about 12.5% of the trees to support regeneration on an 8-year cycle with annual harvesting for Christmas.
Shirley is an aspiring environmentalist not a computer scientist studying programming and does not view a grid as a zero-base
array like most programmers.

Grid Columns

Grid { Rows 1 2 3 4 5 6 7
1 1859 739 0| 1101 | 1569 312 635
2 1069 | 1789 164 678 568 | 1282 | 1633
3 1399 | 1780 56 0 183 234 | 1835
4 0 0 973 | 1155 | 1157 0 490
5 1750 | 1523 | 1714 388 670 0| 1256
6 1926 | 1342 | 1342 | 1397 689 0 965

A cluster is 2 or more adjacent plots that each contain 250 or more estimated trees. Adjacent cells are those that have a common
edge, not a just a corner. However, a cluster can wrap around a plot or group of plots that contain low numbers. For each grid,
Shirley would like a list of the 3 largest clusters in the grid with the total estimated number of trees in the cluster and the
percentage of the grid it covers. For the 6 x 7 grid above, the cluster that includes the plot (1, 1) contains 8635 trees and covers 6
plots which is 14.3% of the total grid.

Let’s help Shirley with her analysis of Christmas tree data!

Input: The first line is a positive integer 1 < T < 10, the number of test cases in the data file. That will then be followed by T
sets of data. For each dataset, the first line will contain 2 integers: the number of rows (R) and the number of columns (C) with 2
<R, C<15. The dataset continues with R rows, each containing C integers (N) to populate the individual array cells with 0 <N
<2000. All items are whitespace delimited.

Output: For each test case, the first line contains a case number, formatted as shown in sample. The next three lines contain the
tree counts and grid percentages, separated by one space, for the largest three clusters from largest count to smallest count. If
there are less than three clusters, the later lines will display NONE instead of a count and percentage. The final line for each test
case will contain 12 carats “~ "~~~ ~anraan? s There are no blank lines.

Sample input: Sample output:
2 Case #1:

6 7 16026 31.0
1859 739 O 1101 1569 312 635 12324 28.6
1069 1789 164 678 568 1282 1633 8635 14.3
1399 1780 56 0 183 234 1835 NANNRRRNNNAR
0 0 973 1155 1157 0 490 Case #2:
1750 1523 1714 388 670 O 1256 14298 66.7
1926 1342 1342 1397 689 O 965 NONE

35 NONE

1865 201 1164 1265 248 NANNNNNNNNAN

164 1933 971 1030 166
1828 1624 1654 1136 1693

14

