

171-1. $(-0.369 \times 0.686)+0.0402$--1= \qquad

17I-2. $\pi / 3.17+1.53-1.89$
$2=$

17I-3. $(-0.451-0.387+0.403+0.0546) /(0.0971)$ \qquad
\qquad

171-4. $\frac{(-227)(-176-122+182)}{(-939)(-638)}$
$4=$

17I-5. $\frac{(-0.00773-0.00215)(-0.706)}{\{(0.00467) /(-0.529)\}}-(\pi-1.09)$ \qquad
$=$

171-6. What is the average of $-487,295$ and 64 ?
$6=$ \qquad

17I-7. What is the remainder of 6230 divided by 37 ?
$7=$ \qquad integer

171-8. What is 6 times the area of a circle of radius equal to 6 ?
$8=$
171-9.
SQUARE
$171-9=$?
Area

$$
\text { 17I-11. } \frac{(-0.024)(-0.0175)+(-0.0966)(-0.00525)}{\pi+0.559-(-1.55)(0.517)}---------------------11=
$$

\qquad

17I-12. $\frac{0.675+0.454}{(0.137)(1.54)\left(1.96 \times 10^{-5}\right)}+(116+258)(240-109)----------12=$
17I-13. $\frac{\left(-8.69 \times 10^{-5}-1.84 \times 10^{-4}\right)\left\{-5.22 \times 10^{5}+(-681)(649)\right\}}{(-64)(-0.897+0.171)(-783)(373)}$ $13=$ \qquad
17I-14. $\frac{6520}{-9.82}+\frac{951+143-286}{0.492-1.32}+\frac{(0.00983+0.0134)}{\left\{\left(5.69 \times 10^{-5}\right) /(-7.15)\right\}}$ $14=$ \qquad

171-15. $\frac{\left(82400+68100-1.07 \times 10^{5}\right)(0.942-0.12-0.45)}{(665)(498)(312)(7.37+6.89+7.97)}$ $15=$ \qquad
17I-16. Five children evenly split 392 candies. Not counting leftovers, how many candies did each child get?
$16=$ \qquad integer
171-17. There are 2640 fathoms in a league, and a league is 3 mi . What is the percent difference between a fathom and a horse "length", 2.4 m ? $17=$ \qquad
171-18. The width of a football field playing area is 160 ft . Andrew runs a mile in 7 min 25 s . How long does it take him to run diagonally across a football field? \qquad $18=$ \qquad
171-19.

RIGHT TRIANGLE

171-20.
RIGHT TRIANGLE

Area $=$?

Page 17I-3

17I-21. $\frac{-0.039+1 /(-5.11)}{1 /(0.456)+6.83}+\frac{1}{(-37.1)}$
$21=$
$22=$ \qquad
 \qquad
171-24. $[-20.2+\sqrt{365}]^{2} \times[802+1750]^{2} \times \sqrt{0.0626 / 0.00346}$
$24=$ \qquad
171-25.

$$
\frac{\sqrt{0.0503+0.0256+(0.0038) /(0.0993)}}{-0.0263+0.0154}
$$

$$
25=
$$

\qquad

171-26. Don wants to raise $\$ 2000$ for a worthy cause by having a raffle. He spends $\$ 400$ on a nice prize to give away. He plans to sell 300 tickets. What should he charge for a raffle ticket?

171-27. Pluto is 3.67 billion mi from the sun. How far is this in light-hr if the speed of light is $299,792,458 \mathrm{~m} / \mathrm{s}$? $27=$ \qquad light-hr(SD)

17I-28. There are 400 million $M \& M$ candies produced daily. The population of the US was 318.9 million in 2014 . There are 210 candies in a bag. Assuming all M\&Ms are consumed in a day and people who buy M\&Ms only buy one bag, what fraction of the US population buys M\&Ms daily? $28=$ \%

17I-30.

SLANT CIRCULAR CYLINDER

Volume $=0.0315$
$171-30=$ \qquad

171-31. $\frac{(0.177+0.222)^{2}}{\sqrt{95.3-62.2}}+\frac{0.00811}{\sqrt{0.0528+0.133}}$
$31=$ \qquad $32=$ \qquad $33=$ \qquad
$34=$ \qquad
$35=$ \qquad

171-36. A weld head deposits $2.5 \mathrm{in}^{3}$ of metal per minute. A single-V weld geometry prepares the joint by cutting a trough along the weld line with a 0.375 in leg inverted equilateral triangle cross section. To just fill the cavity with metal, what is the weld speed, the velocity of the moving weld head along the weld line during welding?
$36=$ \qquad
171-37. Roger unloads a truck in 75 min , but Randy can do it in 62 min . Randy starts unloading the truck, and after some time, Roger joins him. If it takes a total of 40 min to unload the truck, long did Randy work alone? --- 37= \qquad min

171-38. How many minutes past 9:12 do the minute and hour hands line up?
$38=$ \qquad

171-39.
EQUILATERAL TRIANGLE AND CIRCLE

171-39 = \qquad

17I-40.

RIGHT AND SCALENE TRIANGLES

$171-40=$

17I-41. $\left(1.47 \times 10^{-6}\right)\left(-3.37 \times 10^{-6}\right) 10^{\left\{-5.89 \times 10^{-6} /-2.67 \times 10^{-6}\right\}}$
$41=$ \qquad

171-42. $\frac{\mathrm{e}^{+0.128}+\mathrm{e}^{-0.297}}{(-967+54.7)}$
$42=$ \qquad

171-43. $\frac{6380-18500}{\log (7400+3830)}$
$43=$ \qquad

171-44. $(746+1300)^{1 / 3}+1 /\left\{(500)^{-0.0665}\right\}$
$44=$ \qquad

171-45.(deg) $\sin \left[90^{\circ} x \frac{\left(-1.18 \times 10^{7}\right)}{\left(1.02 \times 10^{8}\right)}\right]+\cos \left\{76.6^{\circ}-40.9^{\circ}\right\}$
$45=$ \qquad
171-46. The volume of a balloon is proportional to the number of blows to inflate it. If a balloon is 8 in in diameter after 45 blows, how many more blows are needed to inflate it to 11 in ?
$46=$ \qquad
171-47. The ear length of boys correlates to the child's height. Height-ear length data in inches are (37.2, 2.02), (40.2, 2.12), (44.5, 2.23), (48.0,
2.27). Estimate the ear length of a 5 ft 8 in tall man.
$47=$ \qquad
171-48. For what positive value of g does $3 g^{2}+2 /(g+5)=10$? $48=$ \qquad

171-49.
CUBE WITH CONICAL AND HEMISPHERICAL CAVITIES

Volume $=389$

171-50.

"DUMBBELLS"

Total Surface Area $=450$
$171-50=$
171-51. $10^{+(0.16)}+10^{-(0.82)}+\left[10^{(0.453 / 0.418)}-10^{(0.516)}\right]^{1 / 2}---51=$

17I-53. $\frac{(-51.1) \log (-4.71+7.64)}{\log (0.551)-(0.231)(0.524)}$
$53=$ \qquad
17I-54. $\frac{\left(-5.80 \times 10^{-4}+0.00244\right)^{-0.122}}{\left(7.96 \times 10^{-5}\right)^{-(0.262+0.902)}}$
$54=$

171-55.(rad) $\frac{\arcsin \{(7.43)(1.22) /(10.7)\}}{-11.5+(5.62)(-2.43)}$
$55=$

171-56.(rad) What is the y value of the maximum for the equation $y=$
$5 \cos (3 x / \pi)+4$?
$56=$
17I-57. A water tank is a cylinder on end with $D=2 \mathrm{ft}$ and $\mathrm{h}=8 \mathrm{ft}$. It is filled and then drained from the bottom using a tap. The volume release rate is proportional to the height (or "head") of water. If the tank drains 20% in 30 min , how much more time is needed to drain it by 90% ? --------- $57=$ \qquad 17l-58. What is K_{12} if \mathbf{K} is the product of $\left[\begin{array}{cc}4 & 7 \\ 7 & 33\end{array}\right]\left[\begin{array}{cc}1 & 13 \\ 13 & -21\end{array}\right]$? $58=$ \qquad
171-59.

SOLID OF REVOLUTION $(y=-1)$

Volume = ?

171-60.
CIRCLE FORMED BY TWO SEGMENTS

3.5(Segment 1 Area) $=$ Segment 2 Area
$171-60=$ \qquad

171-59 = \qquad
Page 17I-7

171-61. Josh rides an elevator up 25 stories. A story is 13 ft . The elevator accelerates at 1 g to 20 mph and decelerates at the same rate as it approaches the final floor. How long was the elevator ride?

171-62. The universe is $2.7 \times 10^{23} \mathrm{mi}$ across. What is this number raised to the 80π power? \qquad
171-63. Neil throws a ball to a friend 45 ft away. Neil threw the ball exactly the same way to his friend, now both on the moon where gravitational acceleration is $5.33 \mathrm{ft} / \mathrm{s}^{2}$, so their distance apart was greater. What is the percent difference in the distance between friends?
$63=$

17I-64.
RIGHT TRIANGLE, EQUI LATERAL TRIANGLE AND QUARTER CIRCLE

Right $=$ Equilateral $=$ Quarter Triangle Area ${ }^{=}$Triangle Area ${ }^{=}$Circle Area

17I-65.

SEMICIRCLE AND SEGMENT

$\underset{\text { Area }}{\text { Semicircle }}=2\left[\begin{array}{c}\text { Segment } \\ \text { Area }\end{array}\right]$
$171-65=$
_____-_-_-_-_-_

171-66. $10^{\pi} \times \sqrt{\frac{\left(10^{7.12}\right)\left(10^{0.375}\right)}{\left(10^{-3.81}\right)\left(10^{0.855}\right)}}$ \qquad

171-67. $(92.8-73.4)^{2}+(5.6+47.3) e^{\operatorname{Ln}(0.286)}$
$67=$ \qquad
171-68. (rad)
(8.67) $\left[\frac{\cos (-4.24)}{(-4.24)}+\frac{\cos (5.64)}{(5.64)}\right]$
$68=$ \qquad
171-69. $-\frac{1}{(4.1)}+\frac{1}{3(4.1)^{3}}-\frac{1}{5(4.1)^{5}}+\frac{1}{7(4.1)^{7}}$
$69=$ \qquad

171-70. (rad) $\frac{\arctan \left\{\mathrm{e}^{-(0.4)(0.168)} \sqrt{(1.11) /(7.06)}\right\}}{(9.88) \sqrt{(0.822)(0.549)(4.36)}}$
$(9.88) \sqrt{(0.822)(0.549)(4.36)}$
$70=$

$$
\begin{aligned}
171-1 & =-0.213 \\
& =-2.13 \times 10^{-1}
\end{aligned}
$$

$$
\begin{aligned}
171-11 & =0.000206 \\
& =2.06 \times 10^{-4}
\end{aligned}
$$

17I-21 $=-0.0530$
$=-5.30 \times 10^{-2}$

$$
\begin{aligned}
171-2 & =0.631 \\
& =6.31 \times 10^{-1}
\end{aligned}
$$

$$
\begin{aligned}
171-5 & =-2.84 \\
& =-2.84 \times 10^{0} \\
171-6 & =-42.7 \\
& =-4.27 \times 10^{1}
\end{aligned}
$$

171-7 = 14 integer

$$
\begin{aligned}
171-8 & =679 \\
& =6.79 \times 10^{2}
\end{aligned}
$$

171-9 $=77.6$

$$
=7.76 \times 10^{1}
$$

$$
\begin{aligned}
171-10 & =0.164 \\
& =1.64 \times 10^{-1}
\end{aligned}
$$

$$
\begin{aligned}
171-12 & =322000 \\
& =3.22 \times 10^{5}
\end{aligned}
$$

$171-13=-1.92 \times 10^{-5}$

$$
\begin{aligned}
171-23 & =0.417 \\
& =4.17 \times 10^{-1}
\end{aligned}
$$

171-14 $=-4560$
$=-4.56 \times 10^{3}$
$171-24=3.32 \times 10^{7}$
171-22 $=-0.729$
$=-7.29 \times 10^{-1}$

$$
\begin{array}{rlrl}
171-15 & =7.05 \times 10^{-6} & 171-25 & =-31.0 \\
171-16 & =78 \text { integer } & & =-3.10 \times 10^{1}
\end{array}
$$

$$
\begin{aligned}
171-17 & =31.2 \\
& =3.12 \times 10^{1}
\end{aligned}
$$

$$
17 I-18=28.7 \quad(3 S D)
$$

$$
=2.87 \times 10^{1}
$$

$$
\begin{aligned}
171-19 & =7.12 \\
& =7.12 \times 10^{0}
\end{aligned}
$$

$$
171-20=5.26 \times 10^{6}
$$

171-26 $=\$ 8.00$

171-27 $=5.47$ (3SD)

$$
=5.47 \times 10^{0}
$$

17I-28 $=0.597$

$$
=5.97 \times 10^{-1}
$$

$$
\begin{aligned}
171-29 & =38.2 \\
& =3.82 \times 10^{1}
\end{aligned}
$$

$$
\begin{aligned}
171-30 & =0.281 \\
& =2.81 \times 10^{-1}
\end{aligned}
$$

$\left.\left.\begin{array}{rlrl}171-51 & =4.57 & 171-61 & =12.0 \\ & =4.57 \times 10^{0} & & =1.20 \times 10^{1}\end{array}\right] \begin{array}{lll} & & =8.79 \times 10^{5888} \\ 171-52 & =-3.21 \times 10^{6} & 171-62\end{array}\right)$

$171-31$	$=0.0465$
	$=4.65 \times 10^{-2}$
$171-32$	$=1170$
	$=1.17 \times 10^{3}$
$171-33$	$=0.379$
	$=3.79 \times 10^{-1}$
$171-34$	$=22.1$
	$=2.21 \times 10^{1}$
$171-35$	$=0.191$
	$=1.91 \times 10^{-1}$
$171-36$	$=41.1$
	$=4.11 \times 10^{1}$
$171-37$	$=13.4$
	$=1.34 \times 10^{1}$
$171-39$	$=37.1$
	$=3.71 \times 10^{1}$
	$=1030$
	$=1.03 \times 10^{3}$
	$=760 \times 10^{1}$
$171-38$	$=3$

