Before We Get Started

Remember to register your attendance and complete session evaluations.

Session numbers are in your program.

Sample Test Questions Science 2022-2023

Examine all of the answer choices below. Which choice is the most inclusive (e.g. the grouping that would include all of the others)?
A) Class
B) Genus
C) Family
D) Species
E) Order

Solution

- Level 1
- Biological hierarchy
- King Phillip Cried Out For Green Soup
- Kingdom

Phylum

Class

Order
Family
Genus
Species

A population in Hardy-Weinberg equilibrium contains a total of 6992 individuals. Out of the total, 724 exhibit the dominant phenotype. What is the frequency of the recessive allele in this population?
A) 0.0532
B) 0.1035
C) 0.3218
D) 0.8965
E) 0.9468

Steps to solve H-W questions: $p^{2}+2 p q+q^{2}$ and $p+q=1$

- Level 2, population genetics

1. Look for wording that helps find q or q^{2}
"Out of the total, 724 exhibit the dominant phenotype."
Therefore, the remaining must have recessive phenotype and be homozygous recessive $6992-724=6268$
2. Determine the frequency of homozygous recessive $\left(q^{2}\right)$. 6268/6992 $=0.8965$
3. Solve for the "frequency of the recessive allele" (q)

$$
\begin{aligned}
& q^{2}=0.8965 \\
& q=v 0.8965=0.9468
\end{aligned}
$$

Examine the image of a transmembrane protein embedded within a biological membrane. What can you predict about the area indicated by the arrow?

A) The amino acids are mostly hydrophilic.
cytoplasm
B) The amino acids are mostly hydrophobic.
C) The indicated area could easily move between the current embedded state and the extracellular or intracellular environment.
D) The indicated structure is a fatty acid.
E) The embedded portions of the protein would be covalently bonded to adjacent phospholipids.

Solution

- Level 3
- Membrane and organic molecule structure/function

1. For the reaction

$$
3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO}
$$

Hint: $\quad 46 \mathrm{~g} / \mathrm{mol} \quad 18 \mathrm{~g} / \mathrm{mol} \quad 63 \mathrm{~g} / \mathrm{mol} \quad 30 \mathrm{~g} / \mathrm{mol}$ What is the maximum amount of HNO_{3} that could be formed from 184 g of NO_{2} and 27 g of $\mathrm{H}_{2} \mathrm{O}$?
a) $126 . \mathrm{g}$

Limiting Reactant Problem:

Find the limiting reactant first, then get the answer.
b) $211 . \mathrm{g}$
$184 \mathrm{~g} \mathrm{NO}_{2} / 46 \mathrm{~g} / \mathrm{mol} \times 2 \mathrm{HNO}_{3} / 3 \mathrm{NO}_{3}=2.67 \mathrm{~mol} \mathrm{HNO} 3$
$27 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / 18 \mathrm{~g} / \mathrm{mol} \times 2 \mathrm{HNO}_{3} / 1 \mathrm{H}_{2} \mathrm{O}=3.00 \mathrm{~mol}_{\mathrm{HNO}}^{3}$
c) 94.5 g NO_{2} is limiting reactant.
$2.67 \mathrm{~mol} \mathrm{HNO}_{3} \times 63 \mathrm{~g} / \mathrm{mol}=168 \mathrm{~g} \mathrm{HNO}_{3}$
d) 25.3 g
e) $168 . \mathrm{g}$
2. Which of the following liquids has the highest vapor pressure?
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{C}_{5} \mathrm{H}_{12}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d) $\mathrm{C}_{10} \mathrm{H}_{12}$

- The liquid with the fewest/weakest intermolecular forces (imfs) will have the highest vapor pressure.
- Small imfs mean faster/easier vaporization rates and higher vapor pressures.
- Water and ethanol both have relatively strong imfs (H-bonding) and therefore have relatively low vapor pressures.
- Pentane and decane both only have dispersion forces which are very weak.
- Overall imf strength scales with molecular size - so decane has stronger imfs than pentane.
- So pentane will have the highest vapor pressure.

3. The heat of combustion $\left(\Delta H^{\circ}\right)$ for propane is $2220 \mathrm{~kJ} / \mathrm{mol}$. How many kJ of energy are released when 5.00 L of propane at 2.45 atm and $25^{\circ} \mathrm{C}$ is burned?
a) 1110 kJ
b) 2220 kJ

$$
\begin{aligned}
\mathrm{V}=5.00 \mathrm{~L} ; \mathrm{P}=2.45 \mathrm{~atm} ; \mathrm{T}(\text { in } \mathrm{K}) & ={ }^{\circ} \mathrm{C}+273.15 \\
& =298.15 \mathrm{~K}
\end{aligned}
$$

use the ideal gas law to get moles of propane
c) 1875 kJ
$n=P V / R T=(2.45 \times 5.00) /(0.08206 \times 298.15)=0.500 \mathrm{~mol}$
d) 555 kJ
$0.500 \mathrm{~mol} \times 2220 \mathrm{~kJ} / \mathrm{mol}=1110 \mathrm{~kJ}$
e) 3330 kJ

Energy and Work Example

1. A hockey puck with a mass of 150.0 g slides horizontally across ice. The initial velocity of the puck is $13.0 \mathrm{~m} / \mathrm{s}$. If the puck comes to a stop after sliding 47.0 m , what is the coefficient of friction between the puck and the ice?
A) 0.0570
B) 0.0920
C) 0.180
D) 0.270
E) 0.370

- $K=\frac{1}{2} m v^{2}=(0.5)(0.15)(13)^{2}=12.68 \mathrm{~J}$.
- The puck comes to rest, so all of this energy is converted to heat by friction.
- $W=f d=K=12.68 \mathrm{~J}$.
- $F_{N}-m g=0$.
- $F_{N}=m g=(0.15)(9.8)=1.47 N$. Then friction is: $f=\mu F_{N}=1.47 \mu$.
- $W=f d=(1.47 \mu)(47)=12.68 \mathrm{~J}$.
- So, $\mu=0.18$.

Electric Circuit Example

2. Given the circuit shown, what is the current flowing in the 75.0Ω resistor?
A) 120 mA
B) 89.2 mA
C) 48.6 mA
D) 40.5 mA
E) 19.8 mA

- First ${ }^{1} / R_{p}=1 / 90+1 / 75$, which gives $R_{p}=$ 40.9 .
- Now $R_{\text {Total }}=40.9+60=100.9 \Omega$.
- $I_{\text {Total }}=\frac{9.00}{100.9}=.0892 \mathrm{~A}$.
- Then the voltage drop across the 60Ω resistor is
- $V_{60}=(.0892)(60)=5.35 \mathrm{~V}$.
- $V_{2}=9.00-5.35=3.65 \mathrm{~V}$.
- So, $\left(V_{75}=3.65 \mathrm{~V}\right)$.
- Thus, $I_{75}={ }^{V_{75}} /{ }_{75}=3.65 / 75=.0486 A=$ 48.6 mA

Optics Example

3. A lens taken from a pair of glasses has a focal length of -22.0 cm . If the lens is used to view a 15.0 cm tall candle that is 1.00 m away, how tall is the image of the candle?
A) 2.70 cm
B) 3.30 cm
C) 4.23 cm
D) 7.07 cm
E) 12.3 cm

This is a thin lens problem, so $\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$.
$\frac{1}{100}+\frac{1}{q}=\frac{1}{-22}$, which gives: $q=-18.0 \mathrm{~cm}$.
Magnification is given by:
$M=-\frac{q}{p}=\frac{18}{100}=0.18$.
So, the image height is $h^{\prime}=(0.18)(15.0)=2.70 \mathrm{~cm}$.

End of sample questions

