UIL Number Sense Contest

Basic Shortcuts for Beginners

Larry White

UIL State Number Sense Contest Director texasmath@centex.net http://www.uiltexas.org/academics/number-sense

Special Numbers What Pops into Your Mind?
1728
1024
1331
289
1.732
2.828
3.141
2.718
1.618
Notes:

Mental Math -- How fast can you work these?

3.
$$27 \times 0.7^- =$$

5.
$$35 \div 0.625 =$$

6.
$$33\frac{1}{3}\%$$
 of 24 =

Notes:

Math Magic (Number Sense Tricks)

- A. Memorize the first 35 squares, the first 15 cubes, and the square roots of 2, 3, 5, 6, 7, 8, & 10.
- B. Know the "One-sies" equivalents. (Fractions-Decimals-Percents)
- C. $\frac{3}{5} + \frac{5}{3} = ?$ (Is it a trick? Is it magic? See proof)
- D. Find the average of 25, 36, and 47 using a focus number.
- E. LCM (24, 42) is ?
- F. Write 0.1222... as a fraction.
- G. $(37 \times 13 + 19) \div 8$ has a remainder of?
- H. $35 \times 35 = ?$ $35 \times 45 = ?$ $35 \times 55 = ?$ $35 \times 65 = ?$
- I. $\frac{13}{16} \times 13 = ?$
- J. $53 \times 47 = ?$
- K. Change 234 base 5 to base 10.
- L. $36^2 + 57^2 = ?$

Math Magic (solutions and tricks)

C.
$$\frac{3}{5} + \frac{5}{3} = 2 \frac{4}{15}$$
 (Is it magic?)

$$\frac{a}{b} + \frac{b}{a}$$
 Proof

Let
$$x = \frac{a}{b} + \frac{b}{a}$$

$$\mathbf{x} = \frac{(\mathbf{a}^2 + \mathbf{b}^2)}{\mathbf{a}\mathbf{b}}$$

(common denominator)

$$x-2=\frac{(a^2+b^2)}{ab}-2$$

(subtract 2 from both sides)

$$x-2=\frac{(a^2+b^2-2ab)}{ab}$$

(common denominator)

$$x-2=\frac{(a-b)^2}{ab}$$

(binomial square)

$$x = 2 + \frac{(a-b)^2}{ab}$$

(solve for x)

D. The average of 25, 36, and 47 is 36.

Using 35 as a focus number,

add 10 to 25; subtract 1 from 36; subtract 12 from 47

$$-10+1+12=3$$
.

Since 3 divided by three numbers is 1, then 35 + 1 = 36.

E.
$$LCM(24, 42) = 168$$

use GCF(24, 42) which is 6

$$24 \div 6 = 4$$
 and $4 \times 42 = 168$

F.
$$0.1222... = 11/90$$

$$12 - 1 = 11$$
 and there is 1 repeater (hence the 9) and 1 non-repeater (hence the 0)

G.
$$(37 \times 13 + 19) \div 8$$
 has a remainder of 4

(a + b) is even or odd

$$37 \div 8$$
 has remainder of 5, $13 \div 8$ has remainder of 5, and $19 \div 8$ has remainder of 3
So, $5 \times 5 + 3 = 28$ and $28 \div 8$ has remainder of 4

H.
$$35 \times 35 = 1225$$
 $35 \times 45 = 1575$ $35 \times 55 = 1925$ $35 \times 65 = 2275$ $a5 \times b5 = a \times b +$ the integer portion of $(a + b) \div 2$ then put either 25 or 75 on the end depending on whether

I.
$$\frac{13}{16} \times 13 = 10\frac{9}{16}$$

numerator --->
$$16 - 13 = 3$$
, and $3^2 = 9$ whole number ---> $13 - 3 = 10$

J.
$$53 \times 47 = 2491$$

difference of squares $(50 + 3)(50 - 3) = 50^2 - 3^2 = 2491$

K.
$$234$$
 base 5 to base $10 = 69$

$$2 \times 25 + 3 \times 5 + 4 \times 1 = 69$$

L.
$$36^2 + 57^2 = 4545$$

note
$$3 + 7 = 10$$
 and $6 - 5 = 1$
so $(3^2 + 6^2) \times 101 = 4545$

SHORTCUTS

I. Multiplying numbers ending in 5

- A. First digits are equal: 1) always ends in 25
 - 2) multiply first digit by first digit plus 1

Ex:
$$35 \times 35 = 3 \times (3 + 1)$$
 and ends in $25 = 1225$
65 x 65 = 6 x (6 + 1) and ends in $25 = 4225$

- B. First digits differ by 1: 1) always ends in 75
 - 2) multiply smallest first digit by largest first digit plus 1

Ex:
$$45 \times 35 = 3 \times (4 + 1)$$
 and ends in $75 = 1575$
 $65 \times 75 = 6 \times (7 + 1)$ and ends in $75 = 4875$

- C. First digits differ by an even number: 1) always ends in 25
 - 2) add first digits and divide by 2
 - 3) multiply first digits and add quotient from step 2

Ex:
$$65 \times 25 = 6 \times 2 + ((6+2)/2)$$
 and ends in $25 = 6 \times 2 + 4$ and ends in $25 = 1625$
 $35 \times 95 = 3 \times 9 + ((3+9)/2)$ and ends in $25 = 3 \times 9 + 6$ and ends in $25 = 3325$

- D. First digits differ by an odd number: 1) always ends in 75
 - 2) add first digits and divide by 2
 - 3) multiply first digits and add integer part of quotient

Ex:
$$85 \times 55 = 8 \times 5 + (int((8+5)/2))$$
 and ends in $75 = 8 \times 5 + 6$ and ends in $75 = 4675$
 $35 \times 65 = 3 \times 6 + (int((3+6)/2))$ and ends in $75 = 3 \times 6 + 4$ and ends in $75 = 2275$

II. Multiplying by 11 or Teens

- A. Multiply by 11: 1) bring down units digit
 - 2) add two digits at a time
 - 3) bring down first digit plus any carry

- B. Multiply by teens: 1) multiply units digit of the teen times units digit
 - 2) multiply units digit of the teen times other digits and add back plus carry
 - 3) bring down first digit plus any carry

Ex:
$$72 \times 13 = (7 + C) & (3 \times 7 + 2) & (3 \times 2) = 7 & 23 & 6 = (7 + 2) & 3 & 6 = 936$$

 $164 \times 12 = (1 + C) & (2 \times 1 + 6 + C) & (2 \times 6 + 4 + C) & (2 \times 4) = 1968$

III. Multiplying by 25 or 75

- A. Multiply by 25: 1) divide by 4
 - 2) last two digits 00, 25, 50, or 75 depends on the remainder

Ex:
$$64 \times 25 = 64 \div 4 = 16 \times 10 \times 10^{-2}$$
 R 0 & and remainder digits = 1600 $57 \times 25 = 57 \div 4 = 14 \times 10^{-2}$ R 1 & add remainder digits = 1425

- B. Multiply by 75: 1) divide by 4
 - 2) last two digits 00, 25, 50, or 75 depends on the remainder
 - 3) multiply results by 3

Ex:
$$64 \times 75 = 64 \div 4 = 16 \text{ R } 0 \text{ \& add remainder digits} = 1600 \times 3 = 4800$$

 $57 \times 75 = 57 \div 4 = 14 \text{ R } 1 \text{ \& add remainder digits} = 1425 \times 3 = 4275$

IV. Dividing by 25

- A. Divide by 25: 1) multiply by 4
 - 2) place decimal so the answer has 2 decimal places

Ex:
$$64 \div 25 = 64 \times 4 = 256 \& place decimal = 2.56$$

 $57 \div 25 = 57 \times 4 = 228 \& place decimal = 2.28$

- V. Multiplying by numbers when first or last digits total 10
- A. Multiply when units digits total 10 and first digits are equal:
 - 1) multiply first digit times first digit plus 1
 - 2) multiply units digits

Ex:
$$43 \times 47 = 4 \times (4 + 1) & 3 \times 7 = 4 \times 5 & 3 \times 7 = 2021$$

 $72 \times 78 = 7 \times (7 + 1) & 2 \times 8 = 7 \times 8 & 2 \times 8 = 5616$

- B. Multiply when first digits total 10 and units digits are equal:
 - 1) multiply first digits and add the units digit
 - 2) square the units digit

Ex:
$$27 \times 87 = 2 \times 8 + 7 & 7 \times 7 = 16 + 7 & 49 = 2349$$

 $43 \times 63 = 4 \times 6 + 3 & 3 \times 3 = 24 + 3 & 9 = 2709$

VI. Multiplying by difference of squares

A. Algebra: $a^2 - b^2 = (a + b)(a - b)$:

1) easiest to see shortcut by examples

Ex:
$$53 \times 47 = (50 + 3) \times (50 - 3) = 50^2 - 3^2 = 2500 - 9 = 2491$$

 $28 \times 32 = (30 - 2) \times (30 + 2) = 30^2 - 2^2 = 900 - 4 = 896$

VII. Least Common Multiple

A. $LCM(a,b) = a \div GCF \times b$: 1) find the greatest common factor (GCF)

- 2) divide one number by the GCF
- 3) multiply quotient times the other number

Ex: LCM(8,14) --- GCF = 2 --- 8
$$\div$$
 2 = 4 ---> 4 x 14 = 56 ---> LCM(8,14) = 56 LCM(24,99) --- GCF = 3 --- 24 \div 3 = 8 ---> 8 x 99 = 792 ---> LCM(24,99) = 792

VIII. Division by 9

- A. xyz divided by 9: 1) add x plus y plus z and put sum over 9 (be sure to reduce)
 - 2) add x plus y plus carry
 - 3) bring down x plus carry

Ex.
$$201 \div 9 = (2 + C) & (2 + 0 + C) & (2 + 0 + 1)/9 = 22 3/9 = 22 1/3$$

 $1240 \div 9 = (1 + C) & (1 + 2 + C) & (1 + 2 + 4 + C) & (1 + 2 + 4 + 0)/9 = 137 7/9$

IX. Multiplying numbers close to 100

- A. Numbers close to and below 100:
 - 1) A = 100 minus first number and B = 100 minus second number
 - 2) subtract A from the second number (or vice versa)
 - 3) multiply A and B

Ex.
$$96 \times 99 --> A = 4 & B = 1 --> 99 - 4 \text{ (or } 96 - 1) = 95 --> 4 \times 1 = 4 --> 96 \times 99 = 9504$$

 $92 \times 97 --> A = 8 & B = 3 --> 97 - 8 \text{ (or } 92 - 3) = 89 --> 8 \times 3 = 24 --> 92 \times 97 = 8924$

- **B.** Numbers close to and above 100:
 - 1) A =first number minus 100 and B =second number minus 100
 - 2) add A to the second number (or vice versa)
 - 3) multiply A and B

Ex.
$$106 \times 103 \longrightarrow A = 6 & B = 3 \longrightarrow 6 + 103 \text{ (or } 3 + 106) = 109 \longrightarrow 6 \times 3 = 18 \longrightarrow 10918$$

 $112 \times 105 \longrightarrow A = 12 & B = 5 \longrightarrow 12 + 105 \text{ (or } 5 + 112) = 117 \longrightarrow 12 \times 5 = 60 \longrightarrow 11760$

X. Repeating decimals converted to fractions

- A. All digits repeat:
 - 1) the number of digits that repeat is the number of 9's in the denominator
 - 2) one set of the repeating digits is the numerator (be careful to reduce)

Ex: 0.13 --> two repeaters means two 9's --> 13/99 0.341341341... --> three repeaters means three 9's --> 341/999

- B. Some digits repeat and some don't:
 - 1) the number of digits that repeat is the number of 9's in the denominator
 - 2) the number of non-repeating digits is the number of 0's in the denominator
 - 3) subtract the non-repeating digits from the number before repetition starts for the umerator

Ex: 0.12424... --> two repeaters and one non-repeater means two 9's and one 0 --> 124 - 1 = 123 --> 0.12424... = 123/990

0.1235 --> two repeaters and two non-repeaters means two 9's and two 0's --> 1235 - 12 = 1223 --> 0.12353535... = 1223/9900

UIL High School Number Sense Test Problem Sequencing

Problem 1 – 20 ***

- 1) Addition, subtraction, multiplication, & division of Integers, Mixed Numbers, Fractions, and Decimals
- 2) Order of Operations
- 3) Use of the Distributive Property
- 4) Comparison of Fractions and Decimals
- 5) Multiplication Short Cuts
- 6) Squaring Numbers
- 7) Conversion Problems (either way): Percent/Fractions, English/Metric, Roman Numerals/Arabic Numerals
- 8) Greatest Common Divisor (GCD) & Least Common Multiple (LCM)
- 9) Percent Problems
- 10) Mean, Median, & Mode
- 11) Sums of Integers
- 12) Remainder Problems
- 13) Consumer Type Problems
- 14) Number Theory Problems Involving: Prime Numbers, Divisors, Sums of Divisors, etc.

Problems 21 — 40 ***

- 1) Powers of Numbers
- 2) Substitution
- 3) Word Problems
- 4) Inverses
- 5) Absolute Value
- 6) Ratio/Proportion
- 7) Square Roots/Cube Roots
- 8) Sets
- 9) Base System Problems
- 10) Solving Simple Equations
- 11) Simultaneous Equations
- 12) Repeating Decimals to Fractions
- 13) More Remainder Type Problems
- 14) Perimeter & Area Problems of Polygons
- 15) Sequences
- 16) Quadratic & Cubic Equation Problems

*** A type of problem from a particular section could appear later in the test. Example: A base problem could appear as problem #55, but should not appear earlier than problem #21.

Any questions on any of these?

(1)
$$2011 + 2010 =$$

(2)
$$2010 \times 11 =$$

(5)
$$.8 + \frac{1}{2} - 40\% =$$
 _____ (proper fraction)

(6)
$$18 \times 61 + 32 \times 61 =$$

(8)
$$32 \div 4 + 5 \times 6 - 1 =$$

(9)
$$345 \div 9 =$$
 _____(mixed number)

(11) The sum of the positive integral divisors of 16 is _____

(13)
$$16 \times \frac{16}{19} =$$
_____ (mixed number)

$$(15) 14 + 18 + 24 + 28 + 34 + 38 = \underline{\hspace{1cm}}$$

Any questions on any of these?

(21)	The area of a square whose diagonal is 6" is sq. inches
(22)	The LCM of 72 and 96 is
(23)	$(22 + 44 \times 8) \div 6$ has a remainder of
(24)	How many positive integral divisors does 48 have?
(25)	101101 ÷ 14443 =
(26)	49 × 41 =
(27)	If a dozen red roses cost \$35.60 then three red roses cost \$
(28)	$(13)^2 = $
(29)	$3\frac{4}{5} - 6\frac{7}{8} =$ (mixed number)
(30)	16875 ÷ 129 =
(31)	$(15)^2 + (45)^2 = \underline{\hspace{1cm}}$
(32)	How many positive integers less than 20 are relatively prime to 20?
(33)	28% of 32 is 56% of
(34)	If $3x + 5 = 4x - 9$, then $x =$
(35)	$4\frac{2}{7} \times 4\frac{5}{7} = \underline{\qquad} \text{(mixed number)}$
(36)	The set {e,m,p,t,y} has improper subsets
(37)	$(11)^3 = $
(38)	Round $\sqrt{2} + \sqrt{3}$ to the $\frac{1}{10}$ place.
(39)	.3222 = (fraction)
:(4 0)	1/21347 -