UIL Number Sense Contest

Problems #41-60 and #61-80 from the Sequence Chart

Larry White

UIL State Number Sense Contest Director texasmath@centex.net http://www.uiltexas.org/academics/stem/number-sense

First, some interesting thoughts and ideas

Right Triangles -- Pythagorean Triples -- Use in Trigonometry

- 1. $s^2 + m^2 = h^2$ (interesting labels --- $a^2 + b^2 = c^2$)
- 2. Area of right triangle $A = (s \times m)/2$ (interesting labels ---- $A = (b \times h)/2$) $A = 1/2(a \times b \times \sin c)$
- 3. Altitude of right triangle $h = (a \times b)/c$ (interesting labels --- $a = (s \times m)/h$)
- 4. Given m & n --- a triple can be created by m^2-n^2 , 2mn, & m^2+n^2 provided: m & n are relatively prime integers m>n

m is even and n is odd or vice versa

- 5. Special note: the product of the integral sides of a right triangle is divisible by 60.
- 6. A 30-60-90 triangle has side ratios of x, $\sqrt{3}$ x, & 2
- 7. A 45-45-90 triangle has side ratios of $x, x, \sqrt{2}$
- 8. Pythagorean triples can be used to determine acute, obtuse, or right triangles.
- 9. Trig: $\sin = \text{opp/hyp} = \text{y/r}$ $\cos = \text{adj/hyp} = \text{x/r}$ $\tan = \text{opp/adj} = \text{y/x}$

Sample problems

- 1. The legs of a right \triangle are 5 and 12. The length of the altitude to the hypotenuse is
- 2. The leg opposite the 60° angle in a right triangle is $\sqrt{12}$. The hypotenuse is
- 3. The hypotenuse of an isoscles right triangle is $\sqrt{32}$ cm. The sum of the lengths of the two legs is
- 4. The legs of a right \triangle are 8 and 15. The length of the altitude to the hypotenuse is

UIL High School Number Sense Test Problem Sequencing

Problems 41 - 60 *

- 1) Laws of Exponents
- 2) Right Triangle Problems
- 3) Coordinate Geometry Problems
- 4) Regular Polygon Problems
- 5) Inequalities
- 6) Applications of Theorems from Geometry
- 7) Direct and Inverse Variation
- 8) Sequences & Series (Finite & Infinite)
- 9) Complex Numbers
- 10) Logarithms & Logarithmic Equations
- 11) Factorials, Permutations, & Combinations
- 12) Probability/Odds
- 13) Conics
- 14) Binomial Theorem (Expansion)
- 15) Base System Problems Using Operations
- 16) Roots of equations
- 17) Polygonal numbers

Problems 61 - 70 *

- 1) Volume & Surface Area
- 2) Greatest Integer
- 3) Application of Remainder Theorem
- 4) Trigonometry
- 5) Determinants
- 6) Matrices
- 7) Vectors
- 8) Composite Functions
- 9) Bases Involving Decimals or Fractions
- 10) Polar/Rectangular Coordinates

Problems 71 -80 *

- 1) Function domains and ranges
- 2) Modular Arithmetic
- 3) Limits
- 4) Derivatives
- 5) Slopes of Tangent Lines
- 6) Horizontal & Vertical Asymptotes
- 7) Determining Critical Values
- 8) Maximum & Minimum Problems
- 9) Definite Integration
- 10) Inverse functions

Any questions on any of these?

 $(41) \ 48^2 - 58^2 = \underline{\hspace{1cm}}$

 $(42) \ 504_7 + 305_7 + 534_7 = \underline{\hspace{1cm}} 7$

(43) Find k, given 5, 4, 9, 13, 22, ..., 57, k, 149,

(44) $5^{(-3)} =$ ______ (decimal)

(45) The vertex of $y = 4x^2 - 5x - 3$ is (h, k). $h = ____$

(46) The midpoint between the points (-5,4) and (3,-5) is (h, k). Find h + k.

(47) The smallest root of $(x + 3)^2 = \frac{1}{4}$ is _____

(48) If 6 apps cost \$12.24, then 9 apps cost \$_____

 $(49) 991^2 = \underline{\hspace{1cm}}$

*(50) $\sqrt[3]{542018} =$

(51) Let $(1+2i) \times (3-4i) = a + bi$. Find a + b.

 $(52) i \times i \times i \times i \times i \times i = \underline{\hspace{1cm}}$

(53) If 4, 18, and x are the sides of a triangle, then x + 5 > ______

 $(54) \ 4 \log 10^5 =$ _____

 $(55) \ \frac{3}{4} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{8}{81} + \dots = \underline{\hspace{1cm}}$

(56) 1 + 3 + 6 + 10 + 15 + ... + 78 + 91.

 $(57) 74^2 + 33^2 = \underline{\hspace{1cm}}$

 $(58) (504_6 - 405_6)(2_6) = \underline{\qquad \qquad } 6$

(59) Find the sum of all positive integers x such that $3x - 6 \le 10$.

*(60) 7 × 14 × 21 × 28 = _____

Any questions on any of these?

(61) 0.454545... base 8 = base 10 (fraction)

(62) $(6x^2 + x - 7) \div (x + 1)$ has a remainder of _____

(63) X varies inversely as Y. If X = 16 when Y = 4. find Y when X = 12. Y =

(64) The simplified coefficient of the x^4y^2 term in the expansion of $(x + 3y)^6$ is _____

(65) $f(x) = 3 - 5\cos(\pi x + 1)$. The amplitude is _____

 $(66) \cos^2(\frac{5\pi}{6}) = \underline{\hspace{1cm}}$

(67) $\sec^2(\frac{7\pi}{6}) =$ _____

(68) $f(x) = 5x^2 - 4$. $g(x) = 5 + 4x + x^2$. $f(g(-1)) = _____$

(69) 10¹¹ ÷ 12 has a remainder of _____

*(70) $\pi^5 \times e^4 =$ _____

(71) If $3.2^{(x+1)} = 64$ then $3.2^{(x)} =$

 $\lim_{x \to \infty} \frac{3\cos(x)}{x} = \underline{\hspace{1cm}}$

(73) Let $f(x) = x^3 - 3x^2 - 2x + 1$. Find f'(1).

(74) If x < 0 and |5x + 4| = 18 then x =_____

(75) A pair of dice is rolled. The probability of rolling a four on one die but not on both is _____

(76) If $14^4 \div 4 = (4^x)(49^y)$, then x + y =_____

(77) If $f(x) = 5 - \frac{4x - 5}{4}$ then $f^{-1}(8) =$

(78) $(0.571428571428571428...) \div (0.222...) =$

(79) 12.5% of a mile = ______ yards

 $*(80) (504.2018)^3 =$